Standard

Harvard

APA

Vancouver

Author

BibTeX

@article{007eace25830451cbefcdcf546597224,
title = "A new Andrews-Crandall-type identity and the number of integer solutions to x^2+2y^2+2z^2=n",
abstract = "Using a higher-dimensional analog of an identity known to Kronecker, we discover a new Andrews–Crandall-type identity and use it to count the number of integer solutions to x2+2y2+2z2=n.",
keywords = "05A15, 11B65, 11E25, Appell functions, Class numbers, Ternary quadratic forms, Theta functions",
author = "Досполова, {Мария Каиржановна} and Кочеткова, {Екатерина Александровна} and Mortenson, {Eric T.}",
year = "2024",
month = apr,
day = "1",
doi = "10.1007/s11139-023-00797-z",
language = "English",
volume = "63",
pages = "969--994",
journal = "Ramanujan Journal",
issn = "1382-4090",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - A new Andrews-Crandall-type identity and the number of integer solutions to x^2+2y^2+2z^2=n

AU - Досполова, Мария Каиржановна

AU - Кочеткова, Екатерина Александровна

AU - Mortenson, Eric T.

PY - 2024/4/1

Y1 - 2024/4/1

N2 - Using a higher-dimensional analog of an identity known to Kronecker, we discover a new Andrews–Crandall-type identity and use it to count the number of integer solutions to x2+2y2+2z2=n.

AB - Using a higher-dimensional analog of an identity known to Kronecker, we discover a new Andrews–Crandall-type identity and use it to count the number of integer solutions to x2+2y2+2z2=n.

KW - 05A15

KW - 11B65

KW - 11E25

KW - Appell functions

KW - Class numbers

KW - Ternary quadratic forms

KW - Theta functions

UR - https://www.mendeley.com/catalogue/06cd8a47-71db-3662-acbf-5e683ba61a52/

U2 - 10.1007/s11139-023-00797-z

DO - 10.1007/s11139-023-00797-z

M3 - Article

VL - 63

SP - 969

EP - 994

JO - Ramanujan Journal

JF - Ramanujan Journal

SN - 1382-4090

IS - 4

ER -

ID: 126318433