Research output: Contribution to journal › Article › peer-review
A new Andrews-Crandall-type identity and the number of integer solutions to x^2+2y^2+2z^2=n. / Досполова, Мария Каиржановна; Кочеткова, Екатерина Александровна; Mortenson, Eric T.
In: Ramanujan Journal, Vol. 63, No. 4, 01.04.2024, p. 969-994.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A new Andrews-Crandall-type identity and the number of integer solutions to x^2+2y^2+2z^2=n
AU - Досполова, Мария Каиржановна
AU - Кочеткова, Екатерина Александровна
AU - Mortenson, Eric T.
PY - 2024/4/1
Y1 - 2024/4/1
N2 - Using a higher-dimensional analog of an identity known to Kronecker, we discover a new Andrews–Crandall-type identity and use it to count the number of integer solutions to x2+2y2+2z2=n.
AB - Using a higher-dimensional analog of an identity known to Kronecker, we discover a new Andrews–Crandall-type identity and use it to count the number of integer solutions to x2+2y2+2z2=n.
KW - 05A15
KW - 11B65
KW - 11E25
KW - Appell functions
KW - Class numbers
KW - Ternary quadratic forms
KW - Theta functions
UR - https://www.mendeley.com/catalogue/06cd8a47-71db-3662-acbf-5e683ba61a52/
U2 - 10.1007/s11139-023-00797-z
DO - 10.1007/s11139-023-00797-z
M3 - Article
VL - 63
SP - 969
EP - 994
JO - Ramanujan Journal
JF - Ramanujan Journal
SN - 1382-4090
IS - 4
ER -
ID: 126318433