Standard

A Local Version of the Muckenhoupt Condition and the Accuracy of Estimation of an Unknown Pseudoperiodic Function in Stationary Noise. / Solev, V. N.

In: Journal of Mathematical Sciences , Vol. 244, No. 5, 01.02.2020, p. 896-902.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{e5ef07ca1d904d029a8a7b67954e9329,
title = "A Local Version of the Muckenhoupt Condition and the Accuracy of Estimation of an Unknown Pseudoperiodic Function in Stationary Noise",
abstract = "In this paper, we construct lower and upper bounds of the minimax risk in the estimation problem when we observe the unknown pseudoperiodic function in stationary noise with density satisfying a local version of the Muckenhoupt condition.",
author = "Solev, {V. N.}",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Science+Business Media, LLC, part of Springer Nature.",
year = "2020",
month = feb,
day = "1",
doi = "10.1007/s10958-020-04661-z",
language = "English",
volume = "244",
pages = "896--902",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - A Local Version of the Muckenhoupt Condition and the Accuracy of Estimation of an Unknown Pseudoperiodic Function in Stationary Noise

AU - Solev, V. N.

N1 - Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

PY - 2020/2/1

Y1 - 2020/2/1

N2 - In this paper, we construct lower and upper bounds of the minimax risk in the estimation problem when we observe the unknown pseudoperiodic function in stationary noise with density satisfying a local version of the Muckenhoupt condition.

AB - In this paper, we construct lower and upper bounds of the minimax risk in the estimation problem when we observe the unknown pseudoperiodic function in stationary noise with density satisfying a local version of the Muckenhoupt condition.

UR - http://www.scopus.com/inward/record.url?scp=85078593421&partnerID=8YFLogxK

U2 - 10.1007/s10958-020-04661-z

DO - 10.1007/s10958-020-04661-z

M3 - Article

VL - 244

SP - 896

EP - 902

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 78450119