Standard

A direct theorem for strictly convex domains in ℂn. / Shirokov, N. A.

In: Journal of Mathematical Sciences , Vol. 80, No. 4, 1996, p. 1972-1988.

Research output: Contribution to journalArticlepeer-review

Harvard

Shirokov, NA 1996, 'A direct theorem for strictly convex domains in ℂn', Journal of Mathematical Sciences , vol. 80, no. 4, pp. 1972-1988. https://doi.org/10.1007/BF02367013

APA

Vancouver

Author

Shirokov, N. A. / A direct theorem for strictly convex domains in ℂn. In: Journal of Mathematical Sciences . 1996 ; Vol. 80, No. 4. pp. 1972-1988.

BibTeX

@article{9c0499d678d14765961df3b34c9a8259,
title = "A direct theorem for strictly convex domains in ℂn",
abstract = "For a strictly convex C2-smooth domain Ω ⊂ ℂn and a function f ε Λα (Ω) holomorphic in Ω, we construct polynomials pN, deg p N ≤ N, such that |f(z)-pN(z)|≤CN-α, z ε {\=Ω}.",
author = "Shirokov, {N. A.}",
year = "1996",
doi = "10.1007/BF02367013",
language = "English",
volume = "80",
pages = "1972--1988",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - A direct theorem for strictly convex domains in ℂn

AU - Shirokov, N. A.

PY - 1996

Y1 - 1996

N2 - For a strictly convex C2-smooth domain Ω ⊂ ℂn and a function f ε Λα (Ω) holomorphic in Ω, we construct polynomials pN, deg p N ≤ N, such that |f(z)-pN(z)|≤CN-α, z ε Ω̄.

AB - For a strictly convex C2-smooth domain Ω ⊂ ℂn and a function f ε Λα (Ω) holomorphic in Ω, we construct polynomials pN, deg p N ≤ N, such that |f(z)-pN(z)|≤CN-α, z ε Ω̄.

UR - http://www.scopus.com/inward/record.url?scp=53349090253&partnerID=8YFLogxK

U2 - 10.1007/BF02367013

DO - 10.1007/BF02367013

M3 - Article

AN - SCOPUS:53349090253

VL - 80

SP - 1972

EP - 1988

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 86661700