Research output: Contribution to journal › Article › peer-review
A characteristic polynomial and chains of embedded spaces of minimal splines. / Dem'yanovich, Yu K.
In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, No. 1, 01.12.2000, p. 21-26.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A characteristic polynomial and chains of embedded spaces of minimal splines
AU - Dem'yanovich, Yu K.
PY - 2000/12/1
Y1 - 2000/12/1
N2 - It is established that the set of embedded spaces of minimal splines of a given degree disintegrate into nonintersecting chains of the embedded spaces. The situation arises in the case of the sequence of two-fold reducing steps of an uniform set. It is shown that if one of the chain space is in some smoothness class, than all spaces of the considered chain are in the same class.
AB - It is established that the set of embedded spaces of minimal splines of a given degree disintegrate into nonintersecting chains of the embedded spaces. The situation arises in the case of the sequence of two-fold reducing steps of an uniform set. It is shown that if one of the chain space is in some smoothness class, than all spaces of the considered chain are in the same class.
UR - http://www.scopus.com/inward/record.url?scp=0034587931&partnerID=8YFLogxK
M3 - статья
AN - SCOPUS:0034587931
SP - 21
EP - 26
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
SN - 1025-3106
IS - 1
ER -
ID: 53484548