Standard

A 2|E|/4-time algorithm for max-cut. / Kulikov, A. S.; Fedin, S. S.

In: Journal of Mathematical Sciences , Vol. 126, No. 3, 01.01.2005, p. 1200-1204.

Research output: Contribution to journalArticlepeer-review

Harvard

Kulikov, AS & Fedin, SS 2005, 'A 2|E|/4-time algorithm for max-cut', Journal of Mathematical Sciences , vol. 126, no. 3, pp. 1200-1204. https://doi.org/10.1007/s10958-005-0101-7

APA

Kulikov, A. S., & Fedin, S. S. (2005). A 2|E|/4-time algorithm for max-cut. Journal of Mathematical Sciences , 126(3), 1200-1204. https://doi.org/10.1007/s10958-005-0101-7

Vancouver

Kulikov AS, Fedin SS. A 2|E|/4-time algorithm for max-cut. Journal of Mathematical Sciences . 2005 Jan 1;126(3):1200-1204. https://doi.org/10.1007/s10958-005-0101-7

Author

Kulikov, A. S. ; Fedin, S. S. / A 2|E|/4-time algorithm for max-cut. In: Journal of Mathematical Sciences . 2005 ; Vol. 126, No. 3. pp. 1200-1204.

BibTeX

@article{4c7ec65db91e45aa8c562dd54bf382be,
title = "A 2|E|/4-time algorithm for max-cut",
abstract = "In this paper, we present an exact algorithm that solves MAX-CUT in time poly(|E|) · 2|E|/4, where |E| is the number of edges (multiple edges between two vertices are allowed). This bound improves the previously known bound poly(|E|) · 2|E|/3 of Gramm et al. (2000). Bibliography: 8 titles.",
author = "Kulikov, {A. S.} and Fedin, {S. S.}",
year = "2005",
month = jan,
day = "1",
doi = "10.1007/s10958-005-0101-7",
language = "English",
volume = "126",
pages = "1200--1204",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "3",

}

RIS

TY - JOUR

T1 - A 2|E|/4-time algorithm for max-cut

AU - Kulikov, A. S.

AU - Fedin, S. S.

PY - 2005/1/1

Y1 - 2005/1/1

N2 - In this paper, we present an exact algorithm that solves MAX-CUT in time poly(|E|) · 2|E|/4, where |E| is the number of edges (multiple edges between two vertices are allowed). This bound improves the previously known bound poly(|E|) · 2|E|/3 of Gramm et al. (2000). Bibliography: 8 titles.

AB - In this paper, we present an exact algorithm that solves MAX-CUT in time poly(|E|) · 2|E|/4, where |E| is the number of edges (multiple edges between two vertices are allowed). This bound improves the previously known bound poly(|E|) · 2|E|/3 of Gramm et al. (2000). Bibliography: 8 titles.

UR - http://www.scopus.com/inward/record.url?scp=17144363948&partnerID=8YFLogxK

U2 - 10.1007/s10958-005-0101-7

DO - 10.1007/s10958-005-0101-7

M3 - Article

AN - SCOPUS:17144363948

VL - 126

SP - 1200

EP - 1204

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 3

ER -

ID: 49824550