A quantum-mechanical analysis of the manifestations of the NHN hydrogen bond in the vibrational spectra of the [HCN.H.NCH] + linear complex along the proton transfer reaction profile is given, and the laws governing the diagnostic parameters — potential descriptors of the dynamics of this process — are established. The surface of the potential energy and harmonic frequencies of normal vibrations along the profile of the proton transfer reaction path in the system studied are calculated. It has been shown that when the [HCNH] + and NCH fragments come closer together, a noticeable distortion of the forms of their skeletal vibrations occurs, up to complete mixing into the symmetric and antisymmetric forms. The frequency of the longitudinal vibration of the central proton ν (NH) varies along the reaction path from ~ 3600 to ~ 500 cm-1. In the region of intersection of the terms ν (NH) and ν (CN) an abrupt nature of frequency change is detected.
Original languageRussian
Pages (from-to)480-482
JournalОПТИКА И СПЕКТРОСКОПИЯ
Volume128
Issue number4
DOIs
StatePublished - Apr 2020

    Research areas

  • hydrogen bond, isotope effect, Proton transfer reaction, vibrational spectrum

ID: 52404144