Standard

Сбор и обработка экологической информации в районах нефтегазодобычи и решение других прикладных задач методами активного поиска (обзорная статья). / Svitnev, I.V.; Naydanov, A.F.; Vilkov, A.V.; Sokolov, D.A.; Lebedev, M.Y.; Kharitonova, E.A.; Lukyanova, L.A.

In: НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ, Vol. 24, No. 1, 01.02.2024, p. 144-155.

Research output: Contribution to journalReview articlepeer-review

Harvard

Svitnev, IV, Naydanov, AF, Vilkov, AV, Sokolov, DA, Lebedev, MY, Kharitonova, EA & Lukyanova, LA 2024, 'Сбор и обработка экологической информации в районах нефтегазодобычи и решение других прикладных задач методами активного поиска (обзорная статья)', НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ, vol. 24, no. 1, pp. 144-155. https://doi.org/10.17586/2226-1494-2024-24-1-144-155

APA

Svitnev, I. V., Naydanov, A. F., Vilkov, A. V., Sokolov, D. A., Lebedev, M. Y., Kharitonova, E. A., & Lukyanova, L. A. (2024). Сбор и обработка экологической информации в районах нефтегазодобычи и решение других прикладных задач методами активного поиска (обзорная статья). НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ, 24(1), 144-155. https://doi.org/10.17586/2226-1494-2024-24-1-144-155

Vancouver

Author

Svitnev, I.V. ; Naydanov, A.F. ; Vilkov, A.V. ; Sokolov, D.A. ; Lebedev, M.Y. ; Kharitonova, E.A. ; Lukyanova, L.A. / Сбор и обработка экологической информации в районах нефтегазодобычи и решение других прикладных задач методами активного поиска (обзорная статья). In: НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ. 2024 ; Vol. 24, No. 1. pp. 144-155.

BibTeX

@article{6dbadfff13e94bddbfd084a6c5f1973f,
title = "Сбор и обработка экологической информации в районах нефтегазодобычи и решение других прикладных задач методами активного поиска (обзорная статья)",
abstract = "The methods of monitoring the environmental situation as well as the problems of solving related applied environmental and resource problems in hard-to-reach areas of oil and gas production and also in other sectors of the national economy using unmanned aerial vehicles, are investigated. The methods of studying the types and thicknesses of the layers of the underlying surface by probing them with electromagnetic pulses of the radiofrequency range and gamma radiation are considered. Based on the existing theoretical dependencies of the interaction of electromagnetic radiation with the Earth{\textquoteright}s surface, diagrams of the passage of electromagnetic waves in the decimeter and centimeter ranges through various landscape structures (snow-ice-water-frozen soil) are presented. It is shown that the use of gamma radiation makes it possible to solve the problem of determining the effective altitude of an aircraft during environmental monitoring due to the high energy of photon radiation and albedo from various surfaces including snow cover. A method for calculating the pollutant content on the underlying surface with a given probability of its reliable detection is presented. It is noted that the reliability of the readings of measuring instruments is significantly influenced by their geometric location on the transport platform. It is shown that the proposed solution is advisable to implement using two unmanned aerial vehicles or as mall-sized unmanned airship. Based on the review, the composition of the technical means of the complex for recognizing the types and thicknesses of layers of contamination of the underlying surface is proposed. A possible methodology for assessing the environmental situation is presented. The results of the work can be used in conducting environmental exploration of infrastructure used for transporting oil and gas resources in conditions of difficult access to it as well as for solving similar military-applied and engineering-construction tasks. At the same time, for the first time, the joint use of the radio frequency range of electromagnetic waves and gamma radiation was proposed. The radio frequency range makes it possible to study the structure of the landscape, and gamma radiation from backscattered ionizing radiation is a type of pollutant, as well as to ensure high accuracy in measuring the distance from the module to the upper layer of the underlying surface. {\textcopyright} Свитнев И.В., Найданов А.Ф., Вилков А.В., Соколов Д.А., Лебедев М.Ю., Харитонова Е.А., Лукьянова Л.А., 2024.",
keywords = "confidence interval, electromagnetic waves, environment, environmental situation, gamma radiation, height determination, layer thickness, pollutant, radio pulse, confidence interval, electromagnetic waves, environment, environmental situation, gamma radiation, height determination, layer thickness, pollutant, radio pulse",
author = "I.V. Svitnev and A.F. Naydanov and A.V. Vilkov and D.A. Sokolov and M.Y. Lebedev and E.A. Kharitonova and L.A. Lukyanova",
note = "Export Date: 11 March 2024 Адрес для корреспонденции: Naydanov, A.F.; Mozhaisky Military Aerospace Academy, Russian Federation; эл. почта: naydanov@bk.ru Пристатейные ссылки: Prituzhalova, O.A., Radchenko, K.S., Problems of industrial environmental control in building companies (2019) Construction and Industrial Safety, 14 (66), pp. 145-154. , Притужалова О.А., Радченко К.С. Проблемы проведения произ-водственного экологического контроля в строительных органи-зациях//Строительство и техногенная безопасность. 2019. 14(66). С. 145–154. (in Russian); Kuklina, P.P., Kachukova, A.A., Kvarachelija, E.V., Pesnja, E.I., Bljaharskij, D.P., Unmanned aerial laser scanning. Geodesy, cartography, geoinformatics and cadastre. From idea to application (2021) Collection of abstracts of the IV Russian Conference on Applied Science, pp. 108-112. , Куклина П.П., Качукова А.А., Кварацхелия Е.В., Песня Е.И., Бляхарский Д.П. Беспилотное воздушное лазерное сканирование//Геодезия, картография, геоинформатика и кадастры. производ-ство и образование: Сборник материалов IV всероссийской на-учно-практической конференции. 2021. С. 108–112. (in Russian); Vasilev, V.N., (1990) Emission Spectra of X-ray Installations, p. 143. , Васильев В.Н. и др. Спектры излучения рентгеновских устано-вок. М.: Энергоатомиздат, 1990. 143 с. Moscow, Jenergoatomizdat Publ., (in Russian); Khramov, A.V., Ermolaev, A.A., Shalashova, A.I., Kontrosh, L.V., Possibilities of environmental monitoring with UAV use in Russia (2017) Proceedings of Saint Petersburg Electrotechnical University, (7), pp. 79-84. , Храмов А.В., Ермолаев А.А., Шалашова А.И., Контрош Л.В. Возможности экологического мониторинга с применением БПЛА в России//Известия СПбГЭТУ ЛЭТИ. 2017. 7. С. 79–84. (in Russian); Khabarov, D.A., Adiev, T.S., Popova, O.O., Chugunov, V.A., Kozhevnikov, V.A., Analysis of modern technologies for remote sensing of the Earth (2019) Moscow Economic Journal, (1), pp. 181-190. , https://doi.org/10.24411/2413-046X-2019-11068, Хабаров Д.А., Адиев Т.С., Попова О.О., Чугунов В.А., Кожевников В.А. Анализ современных технологий дистанцион-ного зондирования Земли//Московский экономический журнал. 2019. 1. C. 181–190. https://doi.org (in Russian); Abramov, N.S., Makarov, D.A., Talalaev, A.A., Fralenko, V.P., Modern methods for intelligent processing of earth remote sensing data (2018) Program Systems: Theory and Applications, 9 (4), pp. 417-442. , https://doi.org/10.25209/2079-3316-2018-9-4-417-442, Абрамов Н.С., Макаров Д.А., Талалаев А.А., Фраленко В.П. Современные методы интеллектуальной обработки данных ДЗЗ//Программные системы: теория и приложения. 2018. Т. 9. 4(39). С. 417–442. https://doi.org (39), (in Russian); Grigoriev, A.N., Shabakov, E.I., Dementiev, A.N., Romanov, A.A., Method to reduce data redundancy in remote sensing from space (2016) Journal of Instrument Engineering, 59 (1), pp. 38-44. , https://doi.org/10.17586/0021-3454-2016-59-1-38-44, Григорьев А.Н., Шабаков Е.И., Дементьев А.Н., Романов А.А. Метод сокращения избыточности данных дистанционного зон-дирования из космоса//Известия вузов. Приборостроение. 2016. Т. 59. 1. С. 38–44. https://doi.org (in Russian); Sevryukova, E.A., Volkova, E.A., Doroshenko, V.A., Solodkov, A.V., A prototype unit of a distributed sensor system for ecological monitoring (2021) Journal of the Russian Universities. Radioelectronics, 24 (3), pp. 98-108. , https://doi.org/10.32603/1993-8985-2021-24-3-98-108, Севрюкова Е.А., Волкова Е.А., Дорошенко В.А., Солодков А.В. Разработка макета распределенной сенсорной системы экологи-ческого мониторинга//Известия вузов России. Радио электроника. 2021. Т. 24. 3. С. 98–108. https://doi.org; Trofimova, T.I., (2005) 500 Basic Laws and Formulas, p. 64. , Трофимова Т.И. Физика. 500 основных законов и формул. М.: Высшая школа, 64 c. Moscow, Vysshaja shkola Publ., 2005, (in Russian); Lukyanova, L.A., Svitnev, I.V., Kharitonova, E.A., Gavrilov, I.E., Method for remote control of radiation parameters of spacecraft based on X-ray fluorescence analysis (2022) Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 22 (4), pp. 650-658. , https://doi.org/10.17586/2226-1494-2022-22-4-650-658, Лукьянов Л.А., Свитнев И.В., Харитонова Е.А., Гаврилов И.Е. Метод дистанционного контроля радиационных параметров космических аппаратов на основе рентгенофлуоресцентного анализа//Научно-технический вестник информационных техно-логий, механики и оптики. 2022. Т. 22. 4. С. 650–658. https://doi.org (in Russian); Chernetskaya, I., Spevakova, S., Multispectral electronic device for autonomous mobile platform of ecological monitoring (2020) Trudy MAI, (114), p. 13. , https://doi.org/10.34759/trd-2020-114-14, Чернецкая И.Е., Спевакова С.В. Мультиспектральное оптико-э-лектронное устройство для автономной мобильной платформы экологического мониторинга//Труды МАИ. 2020. 114. С. 13. https://doi.org (in Russian); Dudkin, D.S., Naidanov, A.F., Svitnev, I.V., Simulator of a hardwaresoftware complex for recognizing the types and layers thicknesses of the underlying surface by probing with electromagnetic radiation in the decimeter, centimeter and X-ray ranges (2018) Certificate of the state computer program registration RU2018614834, , Дудкин Д.С., Найданов А.Ф., Свитнев И.В. Симулятор аппарат-но-программного комплекса распознавания типов и толщин слоев подстилающей поверхности методом зондирования элек-тромагнитным излучением дециметрового, сантиметрового и рентгеновского диапазонов. Свидетельство о государственной регистрации программы для ЭВМ RU2018614834. 2018. (in Russian); Alekseev, N.V., New look at the Compton effect (2019) Breakthrough scientific research as the engine of science: Proc. of the International Scientific and Practical Conference, pp. 9-15. , Алексеев Н.В. Новый взгляд на эффект Комптона//Прорывные научные исследования как двигатель науки: сборник статей международной научно-практической конференции. М.: Аэтерна, 2019. С. 9–15. Moscow, Ajeterna Publ., (in Russian); Kulganov, V.A., Svitnev, I.V., Sokolov, D.A., Nigmatullin, R.A., Method for detecting the contamination of the underlying surface based on the characteristics of backscattered ionizing radiation (2020) Proc. of the All-Russian Scientific Conference “Ecology and Space” named after Academician K.Ya. Kondratiev, pp. 206-212. , Кулганов В.А., Свитнев И.В., Соколов Д.А., Нигматуллин Р.А. Метод обнаружения загрязнений подстилающей поверхности по характеристикам обратно рассеянного ионизирующего излучения//Материалы IV Всероссийской научной конференции «Экология и космос имени академика К.Я. Кондратьева/под общ.ред. Ю.В.Кулешова. СПб.: ВКА имени А.Ф.Можайского, 2020. С. 206–212. (in Russian); Sokolov, D.A., Kosyrev, S.V., Kislitsyna, I.A., Rocedure for calculating the contaminant content on the substrate surface with a given probability of its reliable determination (2021) Ecology and Society Development, 1 (35), pp. 31-38. , Соколов Д.А., Косырев С.В., Кислицына И.А. Методика расчета содержания загрязнителя на подстилающей поверхности с задан-ной вероятностью его определения//Экология и развитие обще-ства. 2021. 1(35). С. 31–38. (in Russian); Liubushin, N.P., Brikach, G.E., Harrington{\textquoteright}s desirability generalized function in multiple parameter economic tasks (2014) Economic Analysis: Theory and Practice, 18 (369), pp. 2-10. , Любушин Н.П., Брикач Г.Е. Использование обобщенной функции желательности Харрингтона в многопараметрических экономи-ческих задачах//Экономический анализ: теория и практика. 2014. 18(369). С. 2–10. (in Russian); Dudkin, D.S., Naydanov, A.F., Svitnev, I.V., Module of recognition of types and thicknesses of the underlying surface under the conditions of the far north (2018) Innovations, 11 (241), pp. 116-121. , Дудкин Д.С., Найданов А.Ф., Свитнев И.В. Модуль распознава-ния типов и толщин слоев подстилающей поверхности в услови-ях Крайнего Севера//Инновации. 2018. 11(241). С. 116–121. (in Russian)",
year = "2024",
month = feb,
day = "1",
doi = "10.17586/2226-1494-2024-24-1-144-155",
language = "русский",
volume = "24",
pages = "144--155",
journal = "Scientific and Technical Journal of Information Technologies, Mechanics and Optics",
issn = "2226-1494",
publisher = "НИУ ИТМО",
number = "1",

}

RIS

TY - JOUR

T1 - Сбор и обработка экологической информации в районах нефтегазодобычи и решение других прикладных задач методами активного поиска (обзорная статья)

AU - Svitnev, I.V.

AU - Naydanov, A.F.

AU - Vilkov, A.V.

AU - Sokolov, D.A.

AU - Lebedev, M.Y.

AU - Kharitonova, E.A.

AU - Lukyanova, L.A.

N1 - Export Date: 11 March 2024 Адрес для корреспонденции: Naydanov, A.F.; Mozhaisky Military Aerospace Academy, Russian Federation; эл. почта: naydanov@bk.ru Пристатейные ссылки: Prituzhalova, O.A., Radchenko, K.S., Problems of industrial environmental control in building companies (2019) Construction and Industrial Safety, 14 (66), pp. 145-154. , Притужалова О.А., Радченко К.С. Проблемы проведения произ-водственного экологического контроля в строительных органи-зациях//Строительство и техногенная безопасность. 2019. 14(66). С. 145–154. (in Russian); Kuklina, P.P., Kachukova, A.A., Kvarachelija, E.V., Pesnja, E.I., Bljaharskij, D.P., Unmanned aerial laser scanning. Geodesy, cartography, geoinformatics and cadastre. From idea to application (2021) Collection of abstracts of the IV Russian Conference on Applied Science, pp. 108-112. , Куклина П.П., Качукова А.А., Кварацхелия Е.В., Песня Е.И., Бляхарский Д.П. Беспилотное воздушное лазерное сканирование//Геодезия, картография, геоинформатика и кадастры. производ-ство и образование: Сборник материалов IV всероссийской на-учно-практической конференции. 2021. С. 108–112. (in Russian); Vasilev, V.N., (1990) Emission Spectra of X-ray Installations, p. 143. , Васильев В.Н. и др. Спектры излучения рентгеновских устано-вок. М.: Энергоатомиздат, 1990. 143 с. Moscow, Jenergoatomizdat Publ., (in Russian); Khramov, A.V., Ermolaev, A.A., Shalashova, A.I., Kontrosh, L.V., Possibilities of environmental monitoring with UAV use in Russia (2017) Proceedings of Saint Petersburg Electrotechnical University, (7), pp. 79-84. , Храмов А.В., Ермолаев А.А., Шалашова А.И., Контрош Л.В. Возможности экологического мониторинга с применением БПЛА в России//Известия СПбГЭТУ ЛЭТИ. 2017. 7. С. 79–84. (in Russian); Khabarov, D.A., Adiev, T.S., Popova, O.O., Chugunov, V.A., Kozhevnikov, V.A., Analysis of modern technologies for remote sensing of the Earth (2019) Moscow Economic Journal, (1), pp. 181-190. , https://doi.org/10.24411/2413-046X-2019-11068, Хабаров Д.А., Адиев Т.С., Попова О.О., Чугунов В.А., Кожевников В.А. Анализ современных технологий дистанцион-ного зондирования Земли//Московский экономический журнал. 2019. 1. C. 181–190. https://doi.org (in Russian); Abramov, N.S., Makarov, D.A., Talalaev, A.A., Fralenko, V.P., Modern methods for intelligent processing of earth remote sensing data (2018) Program Systems: Theory and Applications, 9 (4), pp. 417-442. , https://doi.org/10.25209/2079-3316-2018-9-4-417-442, Абрамов Н.С., Макаров Д.А., Талалаев А.А., Фраленко В.П. Современные методы интеллектуальной обработки данных ДЗЗ//Программные системы: теория и приложения. 2018. Т. 9. 4(39). С. 417–442. https://doi.org (39), (in Russian); Grigoriev, A.N., Shabakov, E.I., Dementiev, A.N., Romanov, A.A., Method to reduce data redundancy in remote sensing from space (2016) Journal of Instrument Engineering, 59 (1), pp. 38-44. , https://doi.org/10.17586/0021-3454-2016-59-1-38-44, Григорьев А.Н., Шабаков Е.И., Дементьев А.Н., Романов А.А. Метод сокращения избыточности данных дистанционного зон-дирования из космоса//Известия вузов. Приборостроение. 2016. Т. 59. 1. С. 38–44. https://doi.org (in Russian); Sevryukova, E.A., Volkova, E.A., Doroshenko, V.A., Solodkov, A.V., A prototype unit of a distributed sensor system for ecological monitoring (2021) Journal of the Russian Universities. Radioelectronics, 24 (3), pp. 98-108. , https://doi.org/10.32603/1993-8985-2021-24-3-98-108, Севрюкова Е.А., Волкова Е.А., Дорошенко В.А., Солодков А.В. Разработка макета распределенной сенсорной системы экологи-ческого мониторинга//Известия вузов России. Радио электроника. 2021. Т. 24. 3. С. 98–108. https://doi.org; Trofimova, T.I., (2005) 500 Basic Laws and Formulas, p. 64. , Трофимова Т.И. Физика. 500 основных законов и формул. М.: Высшая школа, 64 c. Moscow, Vysshaja shkola Publ., 2005, (in Russian); Lukyanova, L.A., Svitnev, I.V., Kharitonova, E.A., Gavrilov, I.E., Method for remote control of radiation parameters of spacecraft based on X-ray fluorescence analysis (2022) Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 22 (4), pp. 650-658. , https://doi.org/10.17586/2226-1494-2022-22-4-650-658, Лукьянов Л.А., Свитнев И.В., Харитонова Е.А., Гаврилов И.Е. Метод дистанционного контроля радиационных параметров космических аппаратов на основе рентгенофлуоресцентного анализа//Научно-технический вестник информационных техно-логий, механики и оптики. 2022. Т. 22. 4. С. 650–658. https://doi.org (in Russian); Chernetskaya, I., Spevakova, S., Multispectral electronic device for autonomous mobile platform of ecological monitoring (2020) Trudy MAI, (114), p. 13. , https://doi.org/10.34759/trd-2020-114-14, Чернецкая И.Е., Спевакова С.В. Мультиспектральное оптико-э-лектронное устройство для автономной мобильной платформы экологического мониторинга//Труды МАИ. 2020. 114. С. 13. https://doi.org (in Russian); Dudkin, D.S., Naidanov, A.F., Svitnev, I.V., Simulator of a hardwaresoftware complex for recognizing the types and layers thicknesses of the underlying surface by probing with electromagnetic radiation in the decimeter, centimeter and X-ray ranges (2018) Certificate of the state computer program registration RU2018614834, , Дудкин Д.С., Найданов А.Ф., Свитнев И.В. Симулятор аппарат-но-программного комплекса распознавания типов и толщин слоев подстилающей поверхности методом зондирования элек-тромагнитным излучением дециметрового, сантиметрового и рентгеновского диапазонов. Свидетельство о государственной регистрации программы для ЭВМ RU2018614834. 2018. (in Russian); Alekseev, N.V., New look at the Compton effect (2019) Breakthrough scientific research as the engine of science: Proc. of the International Scientific and Practical Conference, pp. 9-15. , Алексеев Н.В. Новый взгляд на эффект Комптона//Прорывные научные исследования как двигатель науки: сборник статей международной научно-практической конференции. М.: Аэтерна, 2019. С. 9–15. Moscow, Ajeterna Publ., (in Russian); Kulganov, V.A., Svitnev, I.V., Sokolov, D.A., Nigmatullin, R.A., Method for detecting the contamination of the underlying surface based on the characteristics of backscattered ionizing radiation (2020) Proc. of the All-Russian Scientific Conference “Ecology and Space” named after Academician K.Ya. Kondratiev, pp. 206-212. , Кулганов В.А., Свитнев И.В., Соколов Д.А., Нигматуллин Р.А. Метод обнаружения загрязнений подстилающей поверхности по характеристикам обратно рассеянного ионизирующего излучения//Материалы IV Всероссийской научной конференции «Экология и космос имени академика К.Я. Кондратьева/под общ.ред. Ю.В.Кулешова. СПб.: ВКА имени А.Ф.Можайского, 2020. С. 206–212. (in Russian); Sokolov, D.A., Kosyrev, S.V., Kislitsyna, I.A., Rocedure for calculating the contaminant content on the substrate surface with a given probability of its reliable determination (2021) Ecology and Society Development, 1 (35), pp. 31-38. , Соколов Д.А., Косырев С.В., Кислицына И.А. Методика расчета содержания загрязнителя на подстилающей поверхности с задан-ной вероятностью его определения//Экология и развитие обще-ства. 2021. 1(35). С. 31–38. (in Russian); Liubushin, N.P., Brikach, G.E., Harrington’s desirability generalized function in multiple parameter economic tasks (2014) Economic Analysis: Theory and Practice, 18 (369), pp. 2-10. , Любушин Н.П., Брикач Г.Е. Использование обобщенной функции желательности Харрингтона в многопараметрических экономи-ческих задачах//Экономический анализ: теория и практика. 2014. 18(369). С. 2–10. (in Russian); Dudkin, D.S., Naydanov, A.F., Svitnev, I.V., Module of recognition of types and thicknesses of the underlying surface under the conditions of the far north (2018) Innovations, 11 (241), pp. 116-121. , Дудкин Д.С., Найданов А.Ф., Свитнев И.В. Модуль распознава-ния типов и толщин слоев подстилающей поверхности в услови-ях Крайнего Севера//Инновации. 2018. 11(241). С. 116–121. (in Russian)

PY - 2024/2/1

Y1 - 2024/2/1

N2 - The methods of monitoring the environmental situation as well as the problems of solving related applied environmental and resource problems in hard-to-reach areas of oil and gas production and also in other sectors of the national economy using unmanned aerial vehicles, are investigated. The methods of studying the types and thicknesses of the layers of the underlying surface by probing them with electromagnetic pulses of the radiofrequency range and gamma radiation are considered. Based on the existing theoretical dependencies of the interaction of electromagnetic radiation with the Earth’s surface, diagrams of the passage of electromagnetic waves in the decimeter and centimeter ranges through various landscape structures (snow-ice-water-frozen soil) are presented. It is shown that the use of gamma radiation makes it possible to solve the problem of determining the effective altitude of an aircraft during environmental monitoring due to the high energy of photon radiation and albedo from various surfaces including snow cover. A method for calculating the pollutant content on the underlying surface with a given probability of its reliable detection is presented. It is noted that the reliability of the readings of measuring instruments is significantly influenced by their geometric location on the transport platform. It is shown that the proposed solution is advisable to implement using two unmanned aerial vehicles or as mall-sized unmanned airship. Based on the review, the composition of the technical means of the complex for recognizing the types and thicknesses of layers of contamination of the underlying surface is proposed. A possible methodology for assessing the environmental situation is presented. The results of the work can be used in conducting environmental exploration of infrastructure used for transporting oil and gas resources in conditions of difficult access to it as well as for solving similar military-applied and engineering-construction tasks. At the same time, for the first time, the joint use of the radio frequency range of electromagnetic waves and gamma radiation was proposed. The radio frequency range makes it possible to study the structure of the landscape, and gamma radiation from backscattered ionizing radiation is a type of pollutant, as well as to ensure high accuracy in measuring the distance from the module to the upper layer of the underlying surface. © Свитнев И.В., Найданов А.Ф., Вилков А.В., Соколов Д.А., Лебедев М.Ю., Харитонова Е.А., Лукьянова Л.А., 2024.

AB - The methods of monitoring the environmental situation as well as the problems of solving related applied environmental and resource problems in hard-to-reach areas of oil and gas production and also in other sectors of the national economy using unmanned aerial vehicles, are investigated. The methods of studying the types and thicknesses of the layers of the underlying surface by probing them with electromagnetic pulses of the radiofrequency range and gamma radiation are considered. Based on the existing theoretical dependencies of the interaction of electromagnetic radiation with the Earth’s surface, diagrams of the passage of electromagnetic waves in the decimeter and centimeter ranges through various landscape structures (snow-ice-water-frozen soil) are presented. It is shown that the use of gamma radiation makes it possible to solve the problem of determining the effective altitude of an aircraft during environmental monitoring due to the high energy of photon radiation and albedo from various surfaces including snow cover. A method for calculating the pollutant content on the underlying surface with a given probability of its reliable detection is presented. It is noted that the reliability of the readings of measuring instruments is significantly influenced by their geometric location on the transport platform. It is shown that the proposed solution is advisable to implement using two unmanned aerial vehicles or as mall-sized unmanned airship. Based on the review, the composition of the technical means of the complex for recognizing the types and thicknesses of layers of contamination of the underlying surface is proposed. A possible methodology for assessing the environmental situation is presented. The results of the work can be used in conducting environmental exploration of infrastructure used for transporting oil and gas resources in conditions of difficult access to it as well as for solving similar military-applied and engineering-construction tasks. At the same time, for the first time, the joint use of the radio frequency range of electromagnetic waves and gamma radiation was proposed. The radio frequency range makes it possible to study the structure of the landscape, and gamma radiation from backscattered ionizing radiation is a type of pollutant, as well as to ensure high accuracy in measuring the distance from the module to the upper layer of the underlying surface. © Свитнев И.В., Найданов А.Ф., Вилков А.В., Соколов Д.А., Лебедев М.Ю., Харитонова Е.А., Лукьянова Л.А., 2024.

KW - confidence interval

KW - electromagnetic waves

KW - environment

KW - environmental situation

KW - gamma radiation

KW - height determination

KW - layer thickness

KW - pollutant

KW - radio pulse

KW - confidence interval

KW - electromagnetic waves

KW - environment

KW - environmental situation

KW - gamma radiation

KW - height determination

KW - layer thickness

KW - pollutant

KW - radio pulse

UR - https://www.mendeley.com/catalogue/92575508-eba3-3405-a98e-c2fe62dc2270/

U2 - 10.17586/2226-1494-2024-24-1-144-155

DO - 10.17586/2226-1494-2024-24-1-144-155

M3 - Обзорная статья

VL - 24

SP - 144

EP - 155

JO - Scientific and Technical Journal of Information Technologies, Mechanics and Optics

JF - Scientific and Technical Journal of Information Technologies, Mechanics and Optics

SN - 2226-1494

IS - 1

ER -

ID: 117487618