Research output: Contribution to journal › Article › peer-review
Функционально разностные уравнения в задаче о вынужденных колебаниях жидкости в бесконечном бассейне с коническим дном. / Лялинов, М.А.
In: АЛГЕБРА И АНАЛИЗ, Vol. 29, No. 2, 2017, p. 59--88.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Функционально разностные уравнения в задаче о вынужденных колебаниях жидкости в бесконечном бассейне с коническим дном
AU - Лялинов, М.А.
PY - 2017
Y1 - 2017
N2 - Исследуется модельная задача о стационарных вынужденных колебаниях жидкости малой амплитуды в поле силы тяжести в бесконечном бассейне с источниками, расположенными на коническом дне с просачиванием. Изучается классическое решение задачи в линейном приближении. С использованием преобразования Меллина и разложения по сферическим функциям задача сводится к совокупности систем функционально разностных уравнений с мероморфными коэффициентами, которые являются комбинациями присоединенных функций Лежандра и их производных. Задача для системы функционально разностных уравнений редуцируется к сингулярным интегральным уравнениям. Для этого, в частности, вычисляется решение некоторых вспомогательных функциональных уравнений первого порядка с мероморфными коэффициентами. Показано, что система интегральных уравнений фредгольмова, имеет нулевой индекс. При определенных предположениях классическое решение задачи существует и единственно. Получены оценки классического решения задачи в окрестности конической точки
AB - Исследуется модельная задача о стационарных вынужденных колебаниях жидкости малой амплитуды в поле силы тяжести в бесконечном бассейне с источниками, расположенными на коническом дне с просачиванием. Изучается классическое решение задачи в линейном приближении. С использованием преобразования Меллина и разложения по сферическим функциям задача сводится к совокупности систем функционально разностных уравнений с мероморфными коэффициентами, которые являются комбинациями присоединенных функций Лежандра и их производных. Задача для системы функционально разностных уравнений редуцируется к сингулярным интегральным уравнениям. Для этого, в частности, вычисляется решение некоторых вспомогательных функциональных уравнений первого порядка с мероморфными коэффициентами. Показано, что система интегральных уравнений фредгольмова, имеет нулевой индекс. При определенных предположениях классическое решение задачи существует и единственно. Получены оценки классического решения задачи в окрестности конической точки
M3 - статья
VL - 29
SP - 59
EP - 88
JO - АЛГЕБРА И АНАЛИЗ
JF - АЛГЕБРА И АНАЛИЗ
SN - 0234-0852
IS - 2
ER -
ID: 7735603