Standard

Синтез стабилизирующего управления по выходу для одного класса нелинейных систем с запаздывающим аргументом. / Зубер, И.Е.

In: ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ, No. 2, 2004, p. 82-90.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

BibTeX

@article{ccea30b3d45e44a2a3e7faa8348e1870,
title = "Синтез стабилизирующего управления по выходу для одного класса нелинейных систем с запаздывающим аргументом",
abstract = "Рассматривается класс нелинейных систем управления с запаздывающим аргументом. Для этого класса определяются достаточные условия существования и явный вид стабилизирующего управления по экспоненциально устойчивому наблюдателю. Полученное решение базируется на использовании сформированного преобразования подобия, обеспечивающего матрице объекта преобразованной системы вид матрицы Фробениуса с последней функциональной строкой, а вектору распределения преобразованной системы вид последнего единичного орта.",
author = "И.Е. Зубер",
year = "2004",
language = "русский",
pages = "82--90",
journal = "ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1817-2172",
publisher = "Электронный журнал {"}Дифференциальные уравнения и процессы управления{"}",
number = "2",

}

RIS

TY - JOUR

T1 - Синтез стабилизирующего управления по выходу для одного класса нелинейных систем с запаздывающим аргументом

AU - Зубер, И.Е.

PY - 2004

Y1 - 2004

N2 - Рассматривается класс нелинейных систем управления с запаздывающим аргументом. Для этого класса определяются достаточные условия существования и явный вид стабилизирующего управления по экспоненциально устойчивому наблюдателю. Полученное решение базируется на использовании сформированного преобразования подобия, обеспечивающего матрице объекта преобразованной системы вид матрицы Фробениуса с последней функциональной строкой, а вектору распределения преобразованной системы вид последнего единичного орта.

AB - Рассматривается класс нелинейных систем управления с запаздывающим аргументом. Для этого класса определяются достаточные условия существования и явный вид стабилизирующего управления по экспоненциально устойчивому наблюдателю. Полученное решение базируется на использовании сформированного преобразования подобия, обеспечивающего матрице объекта преобразованной системы вид матрицы Фробениуса с последней функциональной строкой, а вектору распределения преобразованной системы вид последнего единичного орта.

UR - https://diffjournal.spbu.ru/RU/numbers/2004.2/issue.html

M3 - статья

SP - 82

EP - 90

JO - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1817-2172

IS - 2

ER -

ID: 107756250