Standard

Место технологии искусственного интеллекта в клиническом разборе пациента с психическим расстройством (презентация случая). / Ноздрачев, Д. И. ; Марачев, М. П. ; Евгенов, П. С. ; Петрова, Наталия Николаевна.

In: ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ ИМ. В.М. БЕХТЕРЕВА, Vol. 59, No. 3, 05.07.2025, p. 52-59.

Research output: Contribution to journalArticlepeer-review

Harvard

Ноздрачев, ДИ, Марачев, МП, Евгенов, ПС & Петрова, НН 2025, 'Место технологии искусственного интеллекта в клиническом разборе пациента с психическим расстройством (презентация случая).', ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ ИМ. В.М. БЕХТЕРЕВА, vol. 59, no. 3, pp. 52-59. https://doi.org/10.31363/2313-7053-2025-3-1087

APA

Ноздрачев, Д. И., Марачев, М. П., Евгенов, П. С., & Петрова, Н. Н. (2025). Место технологии искусственного интеллекта в клиническом разборе пациента с психическим расстройством (презентация случая). ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ ИМ. В.М. БЕХТЕРЕВА, 59(3), 52-59. https://doi.org/10.31363/2313-7053-2025-3-1087

Vancouver

Ноздрачев ДИ, Марачев МП, Евгенов ПС, Петрова НН. Место технологии искусственного интеллекта в клиническом разборе пациента с психическим расстройством (презентация случая). ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ ИМ. В.М. БЕХТЕРЕВА. 2025 Jul 5;59(3):52-59. https://doi.org/10.31363/2313-7053-2025-3-1087

Author

Ноздрачев, Д. И. ; Марачев, М. П. ; Евгенов, П. С. ; Петрова, Наталия Николаевна. / Место технологии искусственного интеллекта в клиническом разборе пациента с психическим расстройством (презентация случая). In: ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ ИМ. В.М. БЕХТЕРЕВА. 2025 ; Vol. 59, No. 3. pp. 52-59.

BibTeX

@article{95e1c88668394a95a7b395587100ed07,
title = "Место технологии искусственного интеллекта в клиническом разборе пациента с психическим расстройством (презентация случая).",
abstract = "The rapid growth of artificial intelligence (AI) technology has led to its integration into various fields, including medicine, including psychiatry. Modern neural networks, such as neural networks and large language models (LLMs), claim to be able to diagnose, prescribe treatments, and predict the course of mental disorders based on historical and clinical data. The capabilities of neural networks in identifying hidden patterns make them an essential component of scientific research, and these advances are expected to be implemented in clinical practice in the near future. Artificial intelligence technology shows great potential in medical education. This study was conducted to evaluate the capabilities of ChatGPT-4-based system in the clinical analysis of a patient with a mental disorder. The analysis involved comparing the results of the LLM{\textquoteright}s analysis of clinical data with psychiatrists{\textquoteright} clinical analysis. The findings showed that the LLM demonstrated high potential in formulating psychiatric diagnoses within an operational framework and supporting the algorithm for therapy and prognosis based on evidence-based approach. However, at the current stage of development, neural networks are unable to fully implement dynamic and phenomenological analysis of the clinical case, which significantly limits the accuracy of diagnostics. This clinical case emphasizes the importance of considering patients{\textquoteright} cultural and psychological background when conceptualizing their phenomenological experiences. Assessing subjective experience in a biopsychosocial context and considering temporal dynamics allows for the most accurate diagnosis. The work on «neuromorphizing» neural networks and adapting their analytical apparatus to human thinking patterns seems promising.",
keywords = "artificial intelligence, big data, clinical decision support system, neural networks, phenomenological psychopathology",
author = "Ноздрачев, {Д. И.} and Марачев, {М. П.} and Евгенов, {П. С.} and Петрова, {Наталия Николаевна}",
year = "2025",
month = jul,
day = "5",
doi = "10.31363/2313-7053-2025-3-1087",
language = "русский",
volume = "59",
pages = "52--59",
journal = "ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ ИМ. В.М. БЕХТЕРЕВА",
issn = "2313-7053",
publisher = "Санкт-Петербургский научно-исследовательский психоневрологический институт им. В. М. Бехтерева",
number = "3",

}

RIS

TY - JOUR

T1 - Место технологии искусственного интеллекта в клиническом разборе пациента с психическим расстройством (презентация случая).

AU - Ноздрачев, Д. И.

AU - Марачев, М. П.

AU - Евгенов, П. С.

AU - Петрова, Наталия Николаевна

PY - 2025/7/5

Y1 - 2025/7/5

N2 - The rapid growth of artificial intelligence (AI) technology has led to its integration into various fields, including medicine, including psychiatry. Modern neural networks, such as neural networks and large language models (LLMs), claim to be able to diagnose, prescribe treatments, and predict the course of mental disorders based on historical and clinical data. The capabilities of neural networks in identifying hidden patterns make them an essential component of scientific research, and these advances are expected to be implemented in clinical practice in the near future. Artificial intelligence technology shows great potential in medical education. This study was conducted to evaluate the capabilities of ChatGPT-4-based system in the clinical analysis of a patient with a mental disorder. The analysis involved comparing the results of the LLM’s analysis of clinical data with psychiatrists’ clinical analysis. The findings showed that the LLM demonstrated high potential in formulating psychiatric diagnoses within an operational framework and supporting the algorithm for therapy and prognosis based on evidence-based approach. However, at the current stage of development, neural networks are unable to fully implement dynamic and phenomenological analysis of the clinical case, which significantly limits the accuracy of diagnostics. This clinical case emphasizes the importance of considering patients’ cultural and psychological background when conceptualizing their phenomenological experiences. Assessing subjective experience in a biopsychosocial context and considering temporal dynamics allows for the most accurate diagnosis. The work on «neuromorphizing» neural networks and adapting their analytical apparatus to human thinking patterns seems promising.

AB - The rapid growth of artificial intelligence (AI) technology has led to its integration into various fields, including medicine, including psychiatry. Modern neural networks, such as neural networks and large language models (LLMs), claim to be able to diagnose, prescribe treatments, and predict the course of mental disorders based on historical and clinical data. The capabilities of neural networks in identifying hidden patterns make them an essential component of scientific research, and these advances are expected to be implemented in clinical practice in the near future. Artificial intelligence technology shows great potential in medical education. This study was conducted to evaluate the capabilities of ChatGPT-4-based system in the clinical analysis of a patient with a mental disorder. The analysis involved comparing the results of the LLM’s analysis of clinical data with psychiatrists’ clinical analysis. The findings showed that the LLM demonstrated high potential in formulating psychiatric diagnoses within an operational framework and supporting the algorithm for therapy and prognosis based on evidence-based approach. However, at the current stage of development, neural networks are unable to fully implement dynamic and phenomenological analysis of the clinical case, which significantly limits the accuracy of diagnostics. This clinical case emphasizes the importance of considering patients’ cultural and psychological background when conceptualizing their phenomenological experiences. Assessing subjective experience in a biopsychosocial context and considering temporal dynamics allows for the most accurate diagnosis. The work on «neuromorphizing» neural networks and adapting their analytical apparatus to human thinking patterns seems promising.

KW - artificial intelligence

KW - big data

KW - clinical decision support system

KW - neural networks

KW - phenomenological psychopathology

UR - https://www.mendeley.com/catalogue/72747aea-1b53-3a1a-9f29-fdcf9402a009/

U2 - 10.31363/2313-7053-2025-3-1087

DO - 10.31363/2313-7053-2025-3-1087

M3 - статья

VL - 59

SP - 52

EP - 59

JO - ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ ИМ. В.М. БЕХТЕРЕВА

JF - ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ ИМ. В.М. БЕХТЕРЕВА

SN - 2313-7053

IS - 3

ER -

ID: 142601354