• Екатерина Александровна Бусько
  • Анастасия Борисовна Гончарова
  • Надежда Рожкова
  • Владислав Семиглазов
  • Алена Шишова
  • Елена Жильцова
  • Григорий Зиновьев
  • Ксения Белобородова
  • Петр Криворотько
В целях стандартизации описания медицинской визуализации молочной железы в мировой практике широко используется система протоколирования изображений BI-RADS (Breast Imaging Reporting And Data System), разработанная американской коллегией радиологов ACR. Вместе с тем, многочисленные визуальные проявления заболеваний молочной железы при разных лучевых методах исследования затрудняют принятие диагностических решений при использовании системы BI-RADS. Наибольшие сложности возникают при оценке многообразных мультипараметрических ультразвуковых (УЗ) признаков заболеваний. В этой связи для повышения эффективности настоящих технологий и скорейшего принятия диагностических решений становится актуальной разработка системной модели на основе алгоритмов с использованием лексикона BI-RADS.

Материалы и методы. С 2017 по 2019 гг. на базе ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России были обследованы 277 женщин с различными жалобами на заболевание молочных желез с помощью мультипараметрического УЗИ с применением эластографии и контрастного усиления (2,5 мл Соновью) на ультразвуковом сканере Hitachi Hi Vision Ascendus. Программная реализация модели принятия диагностических решений осуществлялась средствами языка программирования C# с использованием интегрированной среды разработки Microsoft Visual.

Результаты. Эффективность разработанной диагностической модели с помощью оптимального алгоритма применения различных УЗ технологий при определении злокачественности образования показала чувствительность (Ч) = 90,8%, специфичность (С) = 95,5%, прогностичность положительного результата (ППР) = 88,5%, прогностичность отрицательного результата (ПОР) = 96,4%, точность (Т) = 94,2%. Эффективность разработанной модели при группировании заболеваний показала Ч = 84,2%, С = 81,1%, ППР = 62,7%, ПОР = 93,1%, Т = 81,9%.

Выводы. Предложенная системная модель оптимального алгоритма принятия диагностического решения на основании статистически значимых мультипараметрических УЗ признаков повышает диагностическую эффективность.
Translated title of the contributionModel for making diagnostic decisions in multiparametric ultrasound of breast lesions
Original languageRussian
Pages (from-to)653-658
Number of pages6
JournalВопросы онкологии
Volume66
Issue number6
DOIs
StatePublished - 2020

    Research areas

  • Benign breast lesions, BI-RADS system, Breast cancer, Color doppler mapping (CDM), Contrast enhanced ultrasound (CEUS), Contrast pattern, Elastography (EG), Elastotypes, Ultrasound (US)

    Scopus subject areas

  • Theoretical Computer Science
  • Oncology
  • Statistics and Probability
  • Radiology Nuclear Medicine and imaging

ID: 72145740