Минимаксная задача размещения одиночного объекта на плоскости с прямоугольной метрикой изучается при помощи методов тропической (идемпотентной) математики. Такая задача, известная как задача Ролса или задача посыльного, возникает при размещении пунктов экстренной помощи (больниц, пожарных депо) в городах с прямолинейными перпендикулярными друг другу улицами. В терминах тропической алгебры задача сводится к минимизации функционала, который задается на множестве трехмерных векторов с помощью подходящим образом составленной матрицы и вычисляется с использованием мультипликативно сопряженного транспонирования. Минимум целевой функции находится при ограничениях на множество допустимых решений в виде некоторого соотношения, которое связывает компоненты векторов. Применяется новый результат спектральной теории матриц в идемпотентной алгебре, который позволяет находить общее решение для задачи минимизации таких функционалов в случае, когда она не имеет дополнительных ограничений. На основе этого результата получено о