Standard

Ядра весовых структур — это в точности слабо идемпотентно полные категории. / Bondarko, M. V.; Vostokov, S. V.

In: Chebyshevskii Sbornik, Vol. 21, No. 3, 2020, p. 29-38.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{a8dcbf7ec0cd4189aa1f337b6b04320d,
title = "Ядра весовых структур — это в точности слабо идемпотентно полные категории",
abstract = "This paper proves that additive categories that occur as hearts of weight structures are precisely the weakly idempotent complete categories, that is, the categories where all split monomorphisms give direct sum decompositions. The work also gives several other conditions equivalent to weak idempotent completeness (some of them are completely new) and discusses weak idempotent completions of additive categories.",
keywords = "Heart, Idempotent completion, Triangulated category, Weak retraction-closure, Weakly idempotent complete category, Weight structure",
author = "Bondarko, {M. V.} and Vostokov, {S. V.}",
note = "Funding Information: This work was funded by the Russian Science Foundation under grant no. 16-11-00200. Publisher Copyright: {\textcopyright} 2020 State Lev Tolstoy Pedagogical University. All rights reserved. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2020",
doi = "10.22405/2226-8383-2020-21-3-29-38",
language = "русский",
volume = "21",
pages = "29--38",
journal = "Chebyshevskii Sbornik",
issn = "2226-8383",
publisher = "Тульский государственный педагогический университет им. Л. Н. Толстого",
number = "3",

}

RIS

TY - JOUR

T1 - Ядра весовых структур — это в точности слабо идемпотентно полные категории

AU - Bondarko, M. V.

AU - Vostokov, S. V.

N1 - Funding Information: This work was funded by the Russian Science Foundation under grant no. 16-11-00200. Publisher Copyright: © 2020 State Lev Tolstoy Pedagogical University. All rights reserved. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2020

Y1 - 2020

N2 - This paper proves that additive categories that occur as hearts of weight structures are precisely the weakly idempotent complete categories, that is, the categories where all split monomorphisms give direct sum decompositions. The work also gives several other conditions equivalent to weak idempotent completeness (some of them are completely new) and discusses weak idempotent completions of additive categories.

AB - This paper proves that additive categories that occur as hearts of weight structures are precisely the weakly idempotent complete categories, that is, the categories where all split monomorphisms give direct sum decompositions. The work also gives several other conditions equivalent to weak idempotent completeness (some of them are completely new) and discusses weak idempotent completions of additive categories.

KW - Heart

KW - Idempotent completion

KW - Triangulated category

KW - Weak retraction-closure

KW - Weakly idempotent complete category

KW - Weight structure

UR - http://www.scopus.com/inward/record.url?scp=85101774714&partnerID=8YFLogxK

U2 - 10.22405/2226-8383-2020-21-3-29-38

DO - 10.22405/2226-8383-2020-21-3-29-38

M3 - статья

AN - SCOPUS:85101774714

VL - 21

SP - 29

EP - 38

JO - Chebyshevskii Sbornik

JF - Chebyshevskii Sbornik

SN - 2226-8383

IS - 3

ER -

ID: 75129086