Standard

Оценка времени попадания координаты схемы Бернулли в первый столбец таблицы Юнга. / Азангулов, Искандер Фаритович.

In: ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ЕГО ПРИЛОЖЕНИЯ, Vol. 54, No. 2, 2020, p. 78-84.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

BibTeX

@article{7ab0e6a92db3491c867a58285cb073e2,
title = "Оценка времени попадания координаты схемы Бернулли в первый столбец таблицы Юнга.",
abstract = "Рассматривается классическая схема Бернулли — последовательность независимых случайных величин, одинаково распределенных по мере Лебега $m$ на отрезке $[0,1]$. Пространство реализаций этой схемы есть бесконечномерный куб $\mathcal{X} = ([0, 1]^{\mathbb{N}}, \mu)$ с мерой Лебега $\mu = m^{\mathbb{N}}$. В работе доказывается существование такой функции $k( \cdot )\colon(0, 1) \to \mathbb{R}$ (можно положить $k(\varepsilon) = C/\varepsilon^5$), что для любых $n \in \mathbb{N}$, $\varepsilon \in(0, 1)$ можно выбрать такое измеримое подмножество $\mathcal{X}_{n,\varepsilon} \subset \mathcal{X}$ меры, не меньшей $1 - \varepsilon$, что для любой реализации $x=\{x_n\}_n \in \mathcal{X}_{n, \varepsilon}$ координата $x_n$ в процессе применения алгоритма RSK (Robinson–Schensted–Knuth) достигнет первого столбца $P$-таблицы Юнга в результате не более, чем $k(\varepsilon)n^2$, вставок.",
keywords = "алгоритм RSK, перестановки, схема Бернулли, алгоритм RSK, перестановки, схема Бернулли",
author = "Азангулов, {Искандер Фаритович}",
year = "2020",
language = "русский",
volume = "54",
pages = "78--84",
journal = "ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ЕГО ПРИЛОЖЕНИЯ",
issn = "0374-1990",
publisher = "Математический институт им. В.А. Стеклова РАН",
number = "2",

}

RIS

TY - JOUR

T1 - Оценка времени попадания координаты схемы Бернулли в первый столбец таблицы Юнга.

AU - Азангулов, Искандер Фаритович

PY - 2020

Y1 - 2020

N2 - Рассматривается классическая схема Бернулли — последовательность независимых случайных величин, одинаково распределенных по мере Лебега $m$ на отрезке $[0,1]$. Пространство реализаций этой схемы есть бесконечномерный куб $\mathcal{X} = ([0, 1]^{\mathbb{N}}, \mu)$ с мерой Лебега $\mu = m^{\mathbb{N}}$. В работе доказывается существование такой функции $k( \cdot )\colon(0, 1) \to \mathbb{R}$ (можно положить $k(\varepsilon) = C/\varepsilon^5$), что для любых $n \in \mathbb{N}$, $\varepsilon \in(0, 1)$ можно выбрать такое измеримое подмножество $\mathcal{X}_{n,\varepsilon} \subset \mathcal{X}$ меры, не меньшей $1 - \varepsilon$, что для любой реализации $x=\{x_n\}_n \in \mathcal{X}_{n, \varepsilon}$ координата $x_n$ в процессе применения алгоритма RSK (Robinson–Schensted–Knuth) достигнет первого столбца $P$-таблицы Юнга в результате не более, чем $k(\varepsilon)n^2$, вставок.

AB - Рассматривается классическая схема Бернулли — последовательность независимых случайных величин, одинаково распределенных по мере Лебега $m$ на отрезке $[0,1]$. Пространство реализаций этой схемы есть бесконечномерный куб $\mathcal{X} = ([0, 1]^{\mathbb{N}}, \mu)$ с мерой Лебега $\mu = m^{\mathbb{N}}$. В работе доказывается существование такой функции $k( \cdot )\colon(0, 1) \to \mathbb{R}$ (можно положить $k(\varepsilon) = C/\varepsilon^5$), что для любых $n \in \mathbb{N}$, $\varepsilon \in(0, 1)$ можно выбрать такое измеримое подмножество $\mathcal{X}_{n,\varepsilon} \subset \mathcal{X}$ меры, не меньшей $1 - \varepsilon$, что для любой реализации $x=\{x_n\}_n \in \mathcal{X}_{n, \varepsilon}$ координата $x_n$ в процессе применения алгоритма RSK (Robinson–Schensted–Knuth) достигнет первого столбца $P$-таблицы Юнга в результате не более, чем $k(\varepsilon)n^2$, вставок.

KW - алгоритм RSK

KW - перестановки

KW - схема Бернулли

KW - алгоритм RSK

KW - перестановки

KW - схема Бернулли

M3 - статья

VL - 54

SP - 78

EP - 84

JO - ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ЕГО ПРИЛОЖЕНИЯ

JF - ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ЕГО ПРИЛОЖЕНИЯ

SN - 0374-1990

IS - 2

ER -

ID: 78523958