Standard

Harvard

APA

Vancouver

Author

BibTeX

@book{e8ec0fab177647fd938e236f0e2ce038,
title = "Эффективные по времени и памяти алгоритмические приближения чисел и функций",
abstract = "Учебное пособие содержит подробное обсуждение алгоритмических вещественных и комплексных чисел и функций с ограниченной сложностью вычисления рационально-значных приближений. В качестве основной вычислительной модели для определения алгоритмических чисел и функций используется машина Тьюринга. В качестве классов вычислительной сложности, практически полезных для создания таких систем чисел и функций, берутся класс полиномиальных вычислений по времени и класс линейных вычислений по емкости. В пособии приведены алгоритмы упомянутой сложности для вещественных чисел и функций, часто используемых на практике. Для проверки теоретическихпостроений реализована библиотека классов на языке программирования C#. Для следующих вычислительных моделей доказываются условия полиномиальной реализации на машине Тьюринга: паскалевидные функции, итеративные паскалевидные функции, рефал-5-функции, итеративные рефал-5-функции, нормальные алгорифмы, алгоритмы Маркова-Поста, именованные и рекурсивные алгоритмы Маркова-Поста. Данные",
keywords = "конструктивные вещественные и комплексные числа и функции, полиномиальные по времени алгоритмы, линейные по времени алгоритмы",
author = "Яхонтов, {Сергей Викторович} and Косовский, {Николай Кириллович} and Косовская, {Татьяна Матвеевна}",
year = "2012",
language = "русский",
publisher = "Издательство Санкт-Петербургского университета",
address = "Российская Федерация",

}

RIS

TY - BOOK

T1 - Эффективные по времени и памяти алгоритмические приближения чисел и функций

AU - Яхонтов, Сергей Викторович

AU - Косовский, Николай Кириллович

AU - Косовская, Татьяна Матвеевна

PY - 2012

Y1 - 2012

N2 - Учебное пособие содержит подробное обсуждение алгоритмических вещественных и комплексных чисел и функций с ограниченной сложностью вычисления рационально-значных приближений. В качестве основной вычислительной модели для определения алгоритмических чисел и функций используется машина Тьюринга. В качестве классов вычислительной сложности, практически полезных для создания таких систем чисел и функций, берутся класс полиномиальных вычислений по времени и класс линейных вычислений по емкости. В пособии приведены алгоритмы упомянутой сложности для вещественных чисел и функций, часто используемых на практике. Для проверки теоретическихпостроений реализована библиотека классов на языке программирования C#. Для следующих вычислительных моделей доказываются условия полиномиальной реализации на машине Тьюринга: паскалевидные функции, итеративные паскалевидные функции, рефал-5-функции, итеративные рефал-5-функции, нормальные алгорифмы, алгоритмы Маркова-Поста, именованные и рекурсивные алгоритмы Маркова-Поста. Данные

AB - Учебное пособие содержит подробное обсуждение алгоритмических вещественных и комплексных чисел и функций с ограниченной сложностью вычисления рационально-значных приближений. В качестве основной вычислительной модели для определения алгоритмических чисел и функций используется машина Тьюринга. В качестве классов вычислительной сложности, практически полезных для создания таких систем чисел и функций, берутся класс полиномиальных вычислений по времени и класс линейных вычислений по емкости. В пособии приведены алгоритмы упомянутой сложности для вещественных чисел и функций, часто используемых на практике. Для проверки теоретическихпостроений реализована библиотека классов на языке программирования C#. Для следующих вычислительных моделей доказываются условия полиномиальной реализации на машине Тьюринга: паскалевидные функции, итеративные паскалевидные функции, рефал-5-функции, итеративные рефал-5-функции, нормальные алгорифмы, алгоритмы Маркова-Поста, именованные и рекурсивные алгоритмы Маркова-Поста. Данные

KW - конструктивные вещественные и комплексные числа и функции

KW - полиномиальные по времени алгоритмы

KW - линейные по времени алгоритмы

M3 - учебное-методическое пособие

BT - Эффективные по времени и памяти алгоритмические приближения чисел и функций

PB - Издательство Санкт-Петербургского университета

ER -

ID: 4268280