Standard

Асимптотический анализ свободных колебаний цилиндрической оболочки, сопряженной с кольцевыми пластинами. / Филиппов, Сергей Борисович; Козлова, Анастасия Сергеевна.

In: ИЗВЕСТИЯ САРАТОВСКОГО УНИВЕРСИТЕТА. НОВАЯ СЕРИЯ. СЕРИЯ: МАТЕМАТИКА. МЕХАНИКА. ИНФОРМАТИКА, Vol. 24, No. 1, 20.02.2024, p. 138-149.

Research output: Contribution to journalArticle

Harvard

Филиппов, СБ & Козлова, АС 2024, 'Асимптотический анализ свободных колебаний цилиндрической оболочки, сопряженной с кольцевыми пластинами', ИЗВЕСТИЯ САРАТОВСКОГО УНИВЕРСИТЕТА. НОВАЯ СЕРИЯ. СЕРИЯ: МАТЕМАТИКА. МЕХАНИКА. ИНФОРМАТИКА, vol. 24, no. 1, pp. 138-149. https://doi.org/10.18500/1816-9791-2024-24-1-138-149

APA

Vancouver

Филиппов СБ, Козлова АС. Асимптотический анализ свободных колебаний цилиндрической оболочки, сопряженной с кольцевыми пластинами. ИЗВЕСТИЯ САРАТОВСКОГО УНИВЕРСИТЕТА. НОВАЯ СЕРИЯ. СЕРИЯ: МАТЕМАТИКА. МЕХАНИКА. ИНФОРМАТИКА. 2024 Feb 20;24(1):138-149. https://doi.org/10.18500/1816-9791-2024-24-1-138-149

Author

Филиппов, Сергей Борисович ; Козлова, Анастасия Сергеевна. / Асимптотический анализ свободных колебаний цилиндрической оболочки, сопряженной с кольцевыми пластинами. In: ИЗВЕСТИЯ САРАТОВСКОГО УНИВЕРСИТЕТА. НОВАЯ СЕРИЯ. СЕРИЯ: МАТЕМАТИКА. МЕХАНИКА. ИНФОРМАТИКА. 2024 ; Vol. 24, No. 1. pp. 138-149.

BibTeX

@article{1244f9cffb25460ba36fe166f6b18d9c,
title = "Асимптотический анализ свободных колебаний цилиндрической оболочки, сопряженной с кольцевыми пластинами",
abstract = "Low frequencies and vibration modes of a closed circular cylindrical shell joined with annular plates are obtained by means of asymptotic methods. Two types of vibrations, corresponding to narrow and wide plates, are analyzed. If the width of the ring is sufficiently small, then the vibration mode of the stiffened shell is similar to the mode of the shell without rings. For wide plates joined with a cylindrical shell the vibration mode is localized on the surface of the ring, and the cylindrical shell itself does not actually deform. In both cases the solution of a boundary value problem is searched in the form of the sum of slowly varying functions and edge effect integrals. For narrow plates as a first approximation we obtain a problem about vibrations of the beam supported by springs. For wide plates the problem is reduced to a problem about vibrations of a ring plate.",
keywords = "asymptotic methods, cylindrical shell, free vibrations, joined with annular plates",
author = "Филиппов, {Сергей Борисович} and Козлова, {Анастасия Сергеевна}",
year = "2024",
month = feb,
day = "20",
doi = "10.18500/1816-9791-2024-24-1-138-149",
language = "русский",
volume = "24",
pages = "138--149",
journal = "Izvestiya of Saratov University. Mathematics. Mechanics. Informatics",
issn = "1816-9791",
publisher = "Издательство Саратовского университета",
number = "1",

}

RIS

TY - JOUR

T1 - Асимптотический анализ свободных колебаний цилиндрической оболочки, сопряженной с кольцевыми пластинами

AU - Филиппов, Сергей Борисович

AU - Козлова, Анастасия Сергеевна

PY - 2024/2/20

Y1 - 2024/2/20

N2 - Low frequencies and vibration modes of a closed circular cylindrical shell joined with annular plates are obtained by means of asymptotic methods. Two types of vibrations, corresponding to narrow and wide plates, are analyzed. If the width of the ring is sufficiently small, then the vibration mode of the stiffened shell is similar to the mode of the shell without rings. For wide plates joined with a cylindrical shell the vibration mode is localized on the surface of the ring, and the cylindrical shell itself does not actually deform. In both cases the solution of a boundary value problem is searched in the form of the sum of slowly varying functions and edge effect integrals. For narrow plates as a first approximation we obtain a problem about vibrations of the beam supported by springs. For wide plates the problem is reduced to a problem about vibrations of a ring plate.

AB - Low frequencies and vibration modes of a closed circular cylindrical shell joined with annular plates are obtained by means of asymptotic methods. Two types of vibrations, corresponding to narrow and wide plates, are analyzed. If the width of the ring is sufficiently small, then the vibration mode of the stiffened shell is similar to the mode of the shell without rings. For wide plates joined with a cylindrical shell the vibration mode is localized on the surface of the ring, and the cylindrical shell itself does not actually deform. In both cases the solution of a boundary value problem is searched in the form of the sum of slowly varying functions and edge effect integrals. For narrow plates as a first approximation we obtain a problem about vibrations of the beam supported by springs. For wide plates the problem is reduced to a problem about vibrations of a ring plate.

KW - asymptotic methods

KW - cylindrical shell

KW - free vibrations

KW - joined with annular plates

UR - https://www.mathnet.ru/rus/isu1015

UR - https://www.mendeley.com/catalogue/ed01c014-c45e-385c-8745-e55efeec792a/

U2 - 10.18500/1816-9791-2024-24-1-138-149

DO - 10.18500/1816-9791-2024-24-1-138-149

M3 - статья

VL - 24

SP - 138

EP - 149

JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics

JF - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics

SN - 1816-9791

IS - 1

ER -

ID: 119296394