Standard

Одна задача равномерного размещения для дискретных мультиагентных систем. / Aleksandrov, Alexander Yu; Arakelov, Al'bert I.

In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Vol. 18, No. 1, 2022, p. 171-178.

Research output: Contribution to journalArticlepeer-review

Harvard

Aleksandrov, AY & Arakelov, AI 2022, 'Одна задача равномерного размещения для дискретных мультиагентных систем', Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, vol. 18, no. 1, pp. 171-178. https://doi.org/10.21638/11701/SPBU10.2022.114

APA

Vancouver

Author

Aleksandrov, Alexander Yu ; Arakelov, Al'bert I. / Одна задача равномерного размещения для дискретных мультиагентных систем. In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 2022 ; Vol. 18, No. 1. pp. 171-178.

BibTeX

@article{9887697e3e494d8bb7b75e6919c73f83,
title = "Одна задача равномерного размещения для дискретных мультиагентных систем",
abstract = "This article explores a discrete-time multiagent system on a line. This requires the design of a control protocol providing equidistant agent deployment on a given segment of the line under the constraint that each agent receives information about distances to its neighbors via an auxiliary agent. An approach to the solution of the stated problem is developed. This proves that, under the proposed control protocol, neither communication delay nor switching of communication graph destroy convergence of agents to the equidistant distribution. The results of a numerical simulation confirming the obtained theoretical conclusions are presented.",
keywords = "asymptotic stability, delay, discrete-time system, formation control, multiagent system, switching",
author = "Aleksandrov, {Alexander Yu} and Arakelov, {Al'bert I.}",
note = "Funding Information: ∗ This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement N 075-15-2021-573). {\textcopyright}c St Petersburg State University, 2022 Publisher Copyright: {\textcopyright} 2022 Saint Petersburg State University. All rights reserved.",
year = "2022",
doi = "10.21638/11701/SPBU10.2022.114",
language = "русский",
volume = "18",
pages = "171--178",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - Одна задача равномерного размещения для дискретных мультиагентных систем

AU - Aleksandrov, Alexander Yu

AU - Arakelov, Al'bert I.

N1 - Funding Information: ∗ This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement N 075-15-2021-573). ©c St Petersburg State University, 2022 Publisher Copyright: © 2022 Saint Petersburg State University. All rights reserved.

PY - 2022

Y1 - 2022

N2 - This article explores a discrete-time multiagent system on a line. This requires the design of a control protocol providing equidistant agent deployment on a given segment of the line under the constraint that each agent receives information about distances to its neighbors via an auxiliary agent. An approach to the solution of the stated problem is developed. This proves that, under the proposed control protocol, neither communication delay nor switching of communication graph destroy convergence of agents to the equidistant distribution. The results of a numerical simulation confirming the obtained theoretical conclusions are presented.

AB - This article explores a discrete-time multiagent system on a line. This requires the design of a control protocol providing equidistant agent deployment on a given segment of the line under the constraint that each agent receives information about distances to its neighbors via an auxiliary agent. An approach to the solution of the stated problem is developed. This proves that, under the proposed control protocol, neither communication delay nor switching of communication graph destroy convergence of agents to the equidistant distribution. The results of a numerical simulation confirming the obtained theoretical conclusions are presented.

KW - asymptotic stability

KW - delay

KW - discrete-time system

KW - formation control

KW - multiagent system

KW - switching

UR - http://www.scopus.com/inward/record.url?scp=85134148169&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/1c7bba81-c11a-3c38-b3aa-9bc23c719d55/

U2 - 10.21638/11701/SPBU10.2022.114

DO - 10.21638/11701/SPBU10.2022.114

M3 - статья

AN - SCOPUS:85134148169

VL - 18

SP - 171

EP - 178

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 1

ER -

ID: 97472427