Research output: Contribution to journal › Article › peer-review
Задача минимизации максимального временного смещения для параллельных процессоров. / Григорьева, Н.С.
In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 10: ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ, Vol. 12, No. 4, 2016, p. 51-65.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Задача минимизации максимального временного смещения для параллельных процессоров
AU - Григорьева, Н.С.
PY - 2016
Y1 - 2016
N2 - Задачa минимизации максимального временного смещения для составления расписаний для параллельных идентичных процессоров — классическая комбинаторная оптимизационная задача, имеет много приложений и является NP-трудной. Эта задача составления расписаний обозначается как P|rj |Lmax и формулируется следующим образом: задания должны быть выполнены на нескольких параллельных идентичных процессорах; требуется определить, где и когда каждое задание должно быть выполнено так, чтобы минимизировать максимальное смещение. Для каждого задания известны время поступления задания на выполнение, время выполнения и директивный срок, к которому задание должно быть закончено. Прерывания выполнения заданий не допускаются. Большинство разработок приближенных алгоритмов концентрируется на построении незадерживающих расписаний, в которых процессор не может простаивать, если есть готовое к выполнению задание. Но для построения оптимального расписания необходимо рассматривать такие допустимые расписания, в которых невынужденный простой процессора возможен. Цель данной статьи — представить приближенный алгоритм с невынужденными простоями ELS/IIT (в котором наибольшим приоритетом обладает задание с минимальным поздним началом) и метод ветвей и границ, который строит допустимое расписание с заданным значением максимального смещения. Для нахождения оптимального решения предлагается комбинировать метод ветвей и границ с бинарным поиском. Библиогр. 14 назв. Табл. 5.
AB - Задачa минимизации максимального временного смещения для составления расписаний для параллельных идентичных процессоров — классическая комбинаторная оптимизационная задача, имеет много приложений и является NP-трудной. Эта задача составления расписаний обозначается как P|rj |Lmax и формулируется следующим образом: задания должны быть выполнены на нескольких параллельных идентичных процессорах; требуется определить, где и когда каждое задание должно быть выполнено так, чтобы минимизировать максимальное смещение. Для каждого задания известны время поступления задания на выполнение, время выполнения и директивный срок, к которому задание должно быть закончено. Прерывания выполнения заданий не допускаются. Большинство разработок приближенных алгоритмов концентрируется на построении незадерживающих расписаний, в которых процессор не может простаивать, если есть готовое к выполнению задание. Но для построения оптимального расписания необходимо рассматривать такие допустимые расписания, в которых невынужденный простой процессора возможен. Цель данной статьи — представить приближенный алгоритм с невынужденными простоями ELS/IIT (в котором наибольшим приоритетом обладает задание с минимальным поздним началом) и метод ветвей и границ, который строит допустимое расписание с заданным значением максимального смещения. Для нахождения оптимального решения предлагается комбинировать метод ветвей и границ с бинарным поиском. Библиогр. 14 назв. Табл. 5.
KW - параллельные процессоры
KW - метод ветвей и границ
KW - максимальное временное смещение
KW - parallel identical processors
KW - Branch and bound algorithm
KW - maximum lateness
UR - http://vestnik.spbu.ru/html16/s10/s10v4/05.pdf
M3 - статья
VL - 12
SP - 51
EP - 65
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 4
ER -
ID: 9290878