Research output: Contribution to journal › Article › peer-review
Спектр отделимой алгебры Дынкина и топология на нем. / Валландер, Сергей Сергеевич.
In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ, Vol. 5, No. 3, 2018, p. 351-355.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Спектр отделимой алгебры Дынкина и топология на нем
AU - Валландер, Сергей Сергеевич
N1 - Валландер, С. С. (2020). Спектр отделимой алгебры Дынкина и топология на нем. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 5(3), 351-355. извлечено от https://math-mech-astr-journal.spbu.ru/article/view/8497
PY - 2018
Y1 - 2018
N2 - Мы продолжаем подготовку к построению обобщенной аксиоматики теории вероятностей, начатую в предыдущих работах автора. Наш подход основывается на изучении систем множеств более общего вида, чем традиционные алгебры множеств, и их булевых версий. Мы называем их алгебрами Дынкина. Вводятся спектр отделимой алгебры Дынкина и подходящая топология Гротендика на нем. Отделимые алгебры Дынкина - естественный класс абстрактных алгебр Дынкина, был выделен автором ранее. Для них можно определить частичные булевы операции, обладающие подходящими свойствами. В указанной работе был получен структурный результат - каждая отделимая алгебра Дынкина является объединением своих максимальных булевых подалгебр. В настоящей заметке, основываясь на этом результате, мы определяем спектр отделимой алгебры Дынкина и вводим подходящую топологию Гротендика на нем. Соответствующие построения в определенной степени похожи на конструкции простого спектра коммутативного кольца и топологии Зарисского на нем. Аналогия здесь неполная - топология Зарисского делает спектр коммутативного кольца обычным топологическим пространством, в то время как топология Гротендика, не являющаяся, вообще говоря, топологией в обычном смысле, превращает спектр алгебры Дынкина в более абстрактный объект (site или situs по Гротендику). Для наших целей этого достаточно.
AB - Мы продолжаем подготовку к построению обобщенной аксиоматики теории вероятностей, начатую в предыдущих работах автора. Наш подход основывается на изучении систем множеств более общего вида, чем традиционные алгебры множеств, и их булевых версий. Мы называем их алгебрами Дынкина. Вводятся спектр отделимой алгебры Дынкина и подходящая топология Гротендика на нем. Отделимые алгебры Дынкина - естественный класс абстрактных алгебр Дынкина, был выделен автором ранее. Для них можно определить частичные булевы операции, обладающие подходящими свойствами. В указанной работе был получен структурный результат - каждая отделимая алгебра Дынкина является объединением своих максимальных булевых подалгебр. В настоящей заметке, основываясь на этом результате, мы определяем спектр отделимой алгебры Дынкина и вводим подходящую топологию Гротендика на нем. Соответствующие построения в определенной степени похожи на конструкции простого спектра коммутативного кольца и топологии Зарисского на нем. Аналогия здесь неполная - топология Зарисского делает спектр коммутативного кольца обычным топологическим пространством, в то время как топология Гротендика, не являющаяся, вообще говоря, топологией в обычном смысле, превращает спектр алгебры Дынкина в более абстрактный объект (site или situs по Гротендику). Для наших целей этого достаточно.
UR - https://math-mech-astr-journal.spbu.ru/article/view/8497
M3 - статья
VL - 5
SP - 351
EP - 355
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
SN - 1025-3106
IS - 3
ER -
ID: 39159260