Standard

Непрерывный вариант задачи об эгоистической парковке. / Ананьевский, Сергей Михайлович; Чен, Александр Петрович.

In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ, Vol. 11, No. 1, 2024, p. 84-95.

Research output: Contribution to journalArticlepeer-review

Harvard

Ананьевский, СМ & Чен, АП 2024, 'Непрерывный вариант задачи об эгоистической парковке', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ, vol. 11, no. 1, pp. 84-95. https://doi.org/10.21638/spbu01.2024.104

APA

Ананьевский, С. М., & Чен, А. П. (2024). Непрерывный вариант задачи об эгоистической парковке. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ, 11(1), 84-95. https://doi.org/10.21638/spbu01.2024.104

Vancouver

Ананьевский СМ, Чен АП. Непрерывный вариант задачи об эгоистической парковке. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ. 2024;11(1):84-95. https://doi.org/10.21638/spbu01.2024.104

Author

Ананьевский, Сергей Михайлович ; Чен, Александр Петрович. / Непрерывный вариант задачи об эгоистической парковке. In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ. 2024 ; Vol. 11, No. 1. pp. 84-95.

BibTeX

@article{7299ce542ce14bbe8875f21842eb0f49,
title = "Непрерывный вариант задачи об эгоистической парковке",
abstract = "The work is devoted to the study of a new model of random filling of a segment of large length with intervals of smaller length. A new formulation of the problem is considered. We study a model in which unit intervals are placed on a segment only if the segment being filled has a length of at least 2. In this case, the position of the placed interval is subject to a uniform distribution law. The paper investigates the behavior of the average number of placed intervals depending on the length of the filled segment. An exact expression is obtained for the analog of the Renyi constant.",
author = "Ананьевский, {Сергей Михайлович} and Чен, {Александр Петрович}",
year = "2024",
doi = "10.21638/spbu01.2024.104",
language = "русский",
volume = "11",
pages = "84--95",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - Непрерывный вариант задачи об эгоистической парковке

AU - Ананьевский, Сергей Михайлович

AU - Чен, Александр Петрович

PY - 2024

Y1 - 2024

N2 - The work is devoted to the study of a new model of random filling of a segment of large length with intervals of smaller length. A new formulation of the problem is considered. We study a model in which unit intervals are placed on a segment only if the segment being filled has a length of at least 2. In this case, the position of the placed interval is subject to a uniform distribution law. The paper investigates the behavior of the average number of placed intervals depending on the length of the filled segment. An exact expression is obtained for the analog of the Renyi constant.

AB - The work is devoted to the study of a new model of random filling of a segment of large length with intervals of smaller length. A new formulation of the problem is considered. We study a model in which unit intervals are placed on a segment only if the segment being filled has a length of at least 2. In this case, the position of the placed interval is subject to a uniform distribution law. The paper investigates the behavior of the average number of placed intervals depending on the length of the filled segment. An exact expression is obtained for the analog of the Renyi constant.

UR - https://www.mendeley.com/catalogue/f8f960f3-31ce-35b6-b7f0-6b1347384b15/

U2 - 10.21638/spbu01.2024.104

DO - 10.21638/spbu01.2024.104

M3 - статья

VL - 11

SP - 84

EP - 95

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 1

ER -

ID: 119489562