В статье рассматривается задача определения рейтинга среди участников образовательных коллективов различного уровня: общеобразовательных школ, колледжей, университетов. Описаны модели рейтингов преподавателей и учащихся (студентов). В основе метода лежит модель Де Гроота с использованием матрицы влияния, вычисленной для разных типов образовательных коллективов, представленных принципалами и учащимися. В процессе обучения участники образовательного коллектива влияют друг на друга путeм обсуждения вопросов, обмена мнениями и т. д. Для принципала важна обратная связь от обучаемых, которая является степенью влияния, на ней сфокусировано внимание в данной работе. К важным аспектaм относится вес участников в коллективе. Он определяется предельным вектором для матрицы. Представлены к рассмотрению несколько сценариев, а именно: учебный коллектив с одним и двумя принципалами, а также с различными подгруппами учащихся по уровню подготовки. Влияние принципала в сценариях также варьируется. Он может влиять одинаково на всех участников либо по-разному, в зависимости от рейтингов учащихся. Предложена интерпретация полученных значений рейтингов, приведены результаты численного моделирования для различных матриц влияния.
Original languageRussian
Pages (from-to)259-273
Journal ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
Volume15
Issue number2
DOIs
StatePublished - 2019

ID: 129115442