1. 2024
  2. Comparison of multi-step forecasting methods for renewable energy

    Dolgintseva, E., Wu, H., Petrosian, O., Zhadan, A., Allakhverdyan, A. & Мартемьянов, А. А., 7 Mar 2024, (E-pub ahead of print) In: Energy Systems. 32 p.

    Research output: Contribution to journalArticlepeer-review

  3. 2023
  4. Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches*

    Zhadan, A. U., Wu, H., Kudin, P. S., Zhang, Y. & Petrosian, O. L., 1 Nov 2023, In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 19, 3, p. 391-402 12 p.

    Research output: Contribution to journalArticlepeer-review

  5. Forecasting online adaptation methods for energy domain

    У, Х., Долгинцева, Е. А., Жадан, А. Ю. & Петросян, О. Л., 1 Aug 2023, In: Engineering Applications of Artificial Intelligence. 123, Part C, 106499.

    Research output: Contribution to journalArticlepeer-review

  6. Resource Allocation in Heterogeneous Network with Supervised GNNs

    Sun, Q., Zhang, Y., Wu, H. & Petrosian, O., 8 Jul 2023, In: Lecture Notes in Computer Science. 13969, p. 350-361 12 p.

    Research output: Contribution to journalArticlepeer-review

  7. 2022
  8. Comparison of Reinforcement Learning Based Control Algorithms for One Autonomous Driving Problem

    Kabanov, S., Mitiai, G., Wu, H. & Petrosian, O., 2022, Mathematical Optimization Theory and Operations Research: Recent Trends - 21st International Conference, MOTOR 2022, Revised Selected Papers. Kochetov, Y., Eremeev, A., Khamisov, O. & Rettieva, A. (eds.). Springer Nature, p. 338-349 12 p. (Communications in Computer and Information Science; vol. 1661 CCIS).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  9. Optimal Power Allocation Based on Metaheuristic Algorithms in Wireless Network

    Sun, Q., Wu, H. & Petrosian, O., 2022, In: Mathematics. 10, 18, 3336.

    Research output: Contribution to journalArticlepeer-review

ID: 47667864