1. Scattering theory for Laguerre operators

    Yafaev, D., 2021, Partial Differential Equations, Spectral Theory, and Mathematical Physics: The Ari Laptev Anniversary Volume. EMS Press, p. 457-478 (EMS series of congress reports).

    Research output: Chapter in Book/Report/Conference proceedingArticle in an anthologyResearchpeer-review

  2. Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular δ-potential supported by two half-lines, and systems of functional-difference equations

    Лялинов, М. А., Nov 2022, In: Theoretical and Mathematical Physics. 213, 2, p. 1560-1588 29 p.

    Research output: Contribution to journalArticlepeer-review

  3. Schrödinger operators on periodic discrete graphs

    Korotyaev, E. & Saburova, N., 2014, In: Journal of Mathematical Analysis and Applications. 420, 1, p. 576-611 36 p.

    Research output: Contribution to journalArticle

  4. Schroedinger and Germain-Lagrange Equations in a Domain with Corners

    Korikov, D., Plamenevskii, B. & Sarafanov, O., 2021, Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains. Springer Nature, p. 245-293 49 p. (Operator Theory: Advances and Applications; vol. 284).

    Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

  5. Search for bound and quasibound states in the spin-polarized atomic tritium trimer

    Salci, M., Levin, S. B. & Elander, N., Apr 2004, In: Physical Review A - Atomic, Molecular, and Optical Physics. 69, 4, 044501.

    Research output: Contribution to journalArticlepeer-review

  6. Second order differential operators operators in the limit circle case

    Yafaev, D. R., 2021, In: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). 17, 13 p., 77.

    Research output: Contribution to journalArticlepeer-review

  7. Self-adjoint Jacobi operators in the limit circle case

    Яфаев, Д. Р., 2022, In: Journal of Operator Theory. 89, 1, p. 101-117 17 p.

    Research output: Contribution to journalArticlepeer-review

  8. Semiclassical asymptotic behavior of orthogonal polynomials

    Яфаев, Д. Р., 1 Nov 2020, In: Letters in Mathematical Physics. 110, 11, p. 2857-2891 35 p.

    Research output: Contribution to journalArticlepeer-review

  9. Semiclassical Asymptotics for a Difference Schrödinger Equation with Two Coalescent Turning Points

    Fedotov, A. A., 2021, In: Mathematical Notes. 109, 6, p. 948-953

    Research output: Contribution to journalArticlepeer-review

  10. Semiclassical Asymptotics for a Difference Schrödinger Equation with Two Coalescent Turning Points

    Fedotov, A. A., May 2021, In: Mathematical Notes. 109, 5-6, p. 990-994 5 p.

    Research output: Contribution to journalArticlepeer-review

ID: 30872