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SCHRÖDINGER OPERATOR IN A HALF-PLANE

WITH THE NEUMANN CONDITION ON THE BOUNDARY AND

A SINGULAR δ-POTENTIAL SUPPORTED BY TWO HALF-LINES,

AND SYSTEMS OF FUNCTIONAL-DIFFERENCE EQUATIONS

M. A. Lyalinov∗

We study the asymptotics with respect to distance for the eigenfunction of the Schrödinger operator in

a half-plane with a singular δ-potential supported by two half-lines. Such an operator occurs in problems

of scattering of three one-dimensional quantum particles with point-like pair interaction under some addi-

tional restrictions, as well as in problems of wave diffraction in wedge-shaped and cone-shaped domains.

Using the Kontorovich–Lebedev representation, the problem of constructing an eigenfunction of an oper-

ator reduces to studying a system of homogeneous functional-difference equations with a characteristic

(spectral) parameter. We study the properties of solutions of such a system of second-order homoge-

neous functional-difference equations with a potential from a special class. Depending on the values of

the characteristic parameter in the equations, we describe their nontrivial solutions, the eigenfunctions

of the equation. The study of these solutions is based on reducing the system to integral equations with

a bounded self-adjoint operator, which is a completely continuous perturbation of the matrix Mehler oper-

ator. For a perturbed Mehler operator, sufficient conditions are proposed for the existence of a discrete

spectrum to the right of the essential spectrum. Conditions for the finiteness of the discrete spectrum

are studied. These results are used in the considered problem in the half-plane. The transformation from

the Kontorovich–Lebedev representation to the Sommerfeld integral representation is used to construct

the asymptotics with respect to the distance for the eigenfunction of the Schrödinger operator under

consideration.

Keywords: functional-difference equations, spectrum, perturbed Mehler operator, asymptotics of eigen-

functions

DOI: 10.1134/S0040577922110058

1. Introduction

The main goals of this paper are to study the problem of constructing the eigenfunction and its asymp-

totics for the Schrödinger operator of a special type and to consider the relation between this canonical

problem and some spectral properties of a system of functional-difference (FD) equations with a meromor-

phic matrix potential. An important auxiliary fact is the recently discovered possibility of studying the

spectral properties of systems of FD equations by reducing them to integral equations with the so-called

perturbed Mehler operator. In addition, our study is motivated by numerous applications, some of which

are discussed below.
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We note the interest in the Schrödinger operators with a singular δ-potential supported by surfaces

in R
d (see [1]–[3] and the references therein), as is manifested in the possibility of efficient qualitative study

of the spectra of the corresponding self-adjoint operators. The general approaches of spectral theory [4], [5]

are used, and the corresponding self-adjoint operators are traditionally defined by semibounded sesquilinear

closed forms. However, if the surface of the potential support (for example, a circular cone or a wedge)

admits an incomplete separation of variables, then the eigenfunction and eigenvalue problem can be reduced

to studying the spectral properties of FD equations [6]–[8]. A remarkable fact is that it is then possible

not only to describe the spectrum qualitatively but also to obtain efficient integral representations for the

eigenfunctions and to describe the asymptotics of eigenfunctions at long distances.

In [6], the eigenfunctions and their asymptotic behavior at long distances are studied for the Laplace

operator with a singular potential supported by a conical surface in three-dimensional space. In the frame-

work of incomplete separation of variables, an integral Kontorovich–Lebedev-type representation for the

eigenfunctions is obtained in terms of the solution of an auxiliary FD equation with a meromorphic poten-

tial. Solutions of the FD equation are studied by reducing it to an integral equation with a bounded

self-adjoint integral operator. This integral operator is a perturbation of the scalar Mehler operator.

In [7], we studied the eigenfunctions that describe the natural oscillations of acoustic waves in angular

domains with “semitransparent” boundary conditions. For some values of the spectral parameter in the

boundary value problem, we studied the essential and discrete spectra of the equation and described the

properties of the corresponding solutions. The study is based on the reduction of FD equations to integral

equations of Mehler type with a symmetric kernel.

In contrast to [6], [7], where scalar FD equations are considered, to construct eigenfunctions in this

paper, we study a system of two FD equations with a meromorphic potential, and the class of considered

matrix potentials is motivated by various applications. One such application is discussed in detail in this

paper. We note that it is not difficult to generalize our approach to the case of systems of FD equations of

an arbitrary dimension.

The properties of solutions of FD equations have been studied in recent decades along various

avenues, and this study was related to the development of new approaches and methods in this field,

as well as to numerous applications. Among the most interesting and promising ones, we mention

the monodromization method [9], [10], which was used, for example, to describe the geometry of the

spectrum of the Harper FD equation. It is also interesting to consider the semiclassical constructions

related to difference equations (see [11] and the references therein). Among numerous applications, we

point out the problems of (acoustic or electromagnetic) wave scattering in wedge-shaped or cone-shaped

domains [12]–[18]. In connection with this work, we note the use of various integral representations

(Kontorovich–Lebedev, Sommerfeld–Maliuzhinets, Mellin, Fourier), leading to various FD equations with

meromorphic coefficients. Waves on the water surface in a coastal wedge are studied in [19], [20] by

the reduction to functional equations of Maliuzhinets type [9]. As an efficient research tool, the FD

equations are also known in quantum theory, in particular, when studying the processes of particle decay,

many-particle quantum scattering, etc. [21]–[24].

In Sec. 2, we discuss a basic example related to the self-adjoint Schrödinger operator As with a singular

potential and leading to the study of a system of FD equations. The results in Secs. 3–6 are used to construct

the eigenfunctions of As and to study their behavior at long distances. For this, in particular, the integral

representations for solutions in the form of Kontorovich–Lebedev and Sommerfeld integrals are used. It is

useful to note that the operator As can be related to the quantum mechanical problem of scattering of

three neutral particles with pair interaction given by a δ-function moving along a straight line with some

additional restrictions on the character of their interaction. A similar operator also arises in the problem

of wave diffraction on a system of semitransparent screens in acoustics or electrodynamics.
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Fig. 1. Domain and support of the potential in R
2
+.

We consider the formulation of the problem on the spectrum and eigenfunctions (including generalized

ones) for a system of two FD equations and describe the class of potentials under consideration. The system

is reduced to integral equations on a closed interval. The relevant matrix integral operator K is bounded

and self-adjoint but not completely continuous. We represent this operator as the sum of the so-called

matrix Mehler operator M and its compact perturbation V. Thus, the study of the spectral properties of

a system of two FD equations is reduced to describing the spectral properties of a matrix integral operator.

In Appendix A, we investigate the simplest matrix analogue M of the scalar self-adjoint Mehler opera-

tor M , discuss its spectrum and eigenfunctions, and calculate the resolvent and the partition of unity. The

properties of the kernel of the resolvent are studied and the estimates necessary for the further analysis are

obtained. (The results directly follow from Mehler’s classic formulas of 1881.) These auxiliary results are

used below to study systems of FD equations with a characteristic parameter.

In Sec. 4, we show that the essential spectrum of the perturbed Mehler operator K coincides with the

interval [0, 1]. The operator K is positive, and hence the discrete component of the spectrum can be located

to the right of unity. Sufficient conditions for the existence of a discrete component of the spectrum of the

operator are written in terms of the potential. With the help of the Birman–Schwinger principle, a criterion

for the finiteness of the discrete spectrum is proposed, which is similar to the criterion obtained in [25] for

the perturbation of the Carleman operator by Hankel operators.

The results concerning the spectrum of K are used to describe the spectral properties of FD equa-

tions. We introduce the concept of a set of characteristic numbers of a system of equations and of the

essential characteristic set. Estimates are obtained that describe the behavior of meromorphic solutions

(“eigenfunctions”) at infinity along the imaginary axis.

Finally, we construct efficient formulas for the asymptotics of eigenfunctions. For this, we use the

Sommerfeld integral representation and traditional asymptotic methods such as the saddle-point method

and its “uniform” version.

2. Problem of constructing eigenfunctions of the Schrödinger
operator with a singular potential

2.1. Problem statement. We define a self-adjoint Schrödinger operator As, which is considered

as an example, by its sesquilinear form as in L2(R
2
+) that is semibounded, densely defined, and closed.1

We consider the partition of the half-plane Ω = R
2
+ (x = (X,Y ) ∈ Ω) into three parts Ωj , j = 1, 2, 3, by

1We recall that under certain conditions, as was mentioned in Sec. 1, this operator can be related to the problem of quantum
scattering of three one-dimensional particles with point-like pair interaction.
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the half-lines l1 and l2 (see Fig. 1). We introduce polar coordinates X = r cosϕ, Y = r sinϕ and

Ω1 = {(r, ϕ) : r > 0, 0 < ϕ < Φ1},
Ω2 = {(r, ϕ) : r > 0,Φ1 < ϕ < Φ2},
Ω3 = {(r, ϕ) : r > 0,Φ2 < ϕ < π},

where 0 < Φ1 < Φ2 < π. The corresponding quadratic form becomes

as[U,U ] =

∫
Ω

∇U · ∇U dx− γ1

∫
l1

|U |2 ds− γ2

∫
l2

|U |2 ds,

where γ1 > 0 and γ2 > 0 are Robin parameters, Dom[as] = H1(Ω), Ω = Ω1 ∪ l1 ∪ Ω2 ∪ l2 ∪ Ω3.

The operator As generated by the form as is self-adjoint and semibounded. It is realized as a Laplacian

with a singular δ-potential supported by l = l1 ∪ l2, i.e., As = −�− γδl(x) [1]. In what follows, we use its

classical realization in terms of equations and boundary conditions. We study the equation

AsU = EU,

where the spectral parameter E is assumed to be negative, E < 0. It is well known that the essential

spectrum σe(As) of the operator As coincides with [−γ2/4,∞), where γ = max{γ1, γ2} (we further assume

that γ1 � γ2). The spectrum also has a discrete part σd(As). Our goal is to propose integral representations

for eigenfunctions of the discrete spectrum σd(As) of As and to illustrate the use of the results in Secs. 3–6,

in particular, to find the values σd(As) and to verify that the discrete spectrum is nonempty under certain

conditions. We formulate these conditions in terms of the potential of FD equations related to the considered

example.

2.2. Classical statement and main results. We seek the classical solution u = uj in Ωj , j = 1, 2, 3,

satisfying the equations (E < 0)

−�u1(r, ϕ)− Eu1(r, ϕ) = 0, (r, ϕ) ∈ Ω1,

−�u2(r, ϕ)− Eu2(r, ϕ) = 0, (r, ϕ) ∈ Ω2,

−�u3(r, ϕ)− Eu3(r, ϕ) = 0, (r, ϕ) ∈ Ω3,

(1)

and the boundary conditions

∂u

∂n

∣∣∣∣
Y=0

= 0, (2)

∂u1

∂n

∣∣∣∣
l1

− ∂u2

∂n

∣∣∣∣
l1

= γ1u1|l1 , u1|l1 = u2|l1 ,

∂u2

∂n

∣∣∣∣
l2

− ∂u3

∂n

∣∣∣∣
l2

= γ2u2|l1 , u2|l2 = u3|l2 ,
(3)

where the unit normal n is directed counterclockwise. The condition u ∈ H1(Ω) implies that

u(r, ϕ) = C +O(rδ∗ ), δ∗ > 0, r → 0, (4)

uniformly in ϕ. We assume that nontrivial solutions (eigenfunctions) of problem (1)–(4) decrease exponen-

tially as r → ∞ and the integral ∫
Ω

|u(r, ϕ)|2e2drr dr dϕ < ∞ (5)

is bounded for some positive d. We note that such solutions satisfying (1)–(4) exist for some E < −γ2/4,

but if E � −γ2/4, then the corresponding nontrivial solutions (those on the continuous spectrum) violate

condition (5).
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The main new results that we discuss in detail in this paper consist in the following. First, we study

sufficient conditions for the existence of the discrete component of the spectrum of the operator As, whose

analysis via the Kontorovich–Lebedev integrals reduces to the description of characteristic values Λ = Λm

of the corresponding FD equations of the form h(ν + 1) − h(ν − 1) − 2iΛW∗(ν)h(ν) = 0 related to the

problem under consideration (here, W∗(ν) is a meromorphic matrix potential defined explicitly in Sec. 2.3

in terms of sine-to-cosine ratios). The FD equation corresponds to the integral equation r(x) = Λ(Kr)(x)

with the following operator (which we call a perturbed Mehler operator):

(Kr)(x) =
1

π

∫ 1

0

dy

x+ y

√
w(x)a

√
w(y)r(y),

where w(x) = W(it)|
t= 1

π ln(1/x+
√

1/x2−1)
> 0, t > 0, and a is a constant diagonal matrix.

Sufficient conditions for the existence of the discrete spectrum μm = Λ−1
m of this operator (and hence

also of the spectrum Em = −[γ1/2Λm]2 of As) are described in the following theorem.

Theorem 2.1. Let V be a self-adjoint compact operator in the space H = L2((0, 1);C
2), and for

some n, let the inequality

1

π

∫ 1

0

dx

∫ 1

0

dy

√
w(x)a

√
w(y)− a

y + x
un(y)un(x) > εn (6)

be satisfied. Then the perturbed Mehler operator K = M + V has a nontrivial discrete spectrum to the

right of σe(K) = [0, 1] (we can take εn = 1/n in the inequality).

In this theorem, un(x) is a singular Weyl sequence that can be constructed explicitly for the unper-

turbed operator M = K − V and which corresponds to the end of the essential spectrum μ = 1 of this

operator. A simpler sufficient condition is given by inequality (21).

Second, using the Birman–Schwinger principle, we obtain a condition for the finiteness of the discrete

component of the spectrum in terms of the potential in the system of FD equations. Namely, the following

assertion holds.

Theorem 2.2. Let α > 3/2, let the operator V ≥ 0, V ∈ S2, be of Hilbert–Schmidt class and,

in addition, let the operator QαVQα ∈ S∞ be compact. Then the total number N(1) of eigenvalues of the

operator K = M+V that are greater than μ = 1 is finite and satisfies the estimate

N(1) ≤ (‖V‖2 +Gα‖QαVQα‖)2, (7)

where Gα is a constant, Q := QI, [Qf ](t) := 〈ln t〉f(t), and 〈ln t〉 = ln(2/t), f ∈ L2(0, 1).

If in addition sufficient conditions (6) or (23) (or (21)) are satisfied, then the discrete spectrum of K

located to the right of μ = 1 is not empty.

Finally, the asymptotic behavior of the eigenfunction is calculated and its exponential decrease is

shown.

Lemma 2.1. The eigenfunction um exponentially decreases as r → ∞ (in accordance with (44), (45)

outside the singular directions in Ω1); otherwise, in a neighborhood of singular directions, the asymptotics

has form (46) (in Ω1) and depends on a Fresnel-type integral. The asymptotics has a similar structure in

the domain Ω2,3.

This also proves the existence of so-called singular directions near which the character of the exponential

decrease of the eigenfunction changes.
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2.3. Kontorovich–Lebedev integrals and reduction to FD equations. We seek the classical

solution of Eqs. (1) with 0 < ϕ < π in the form of integrals

u1(r, ϕ) =
1

iπ

∫ i∞

−i∞
sin(πν)Kν(κr)

cos(νϕ)

cos(Φ1ν)
H1(ν) dν, ϕ ∈ [0,Φ1],

u2(r, ϕ) =
1

iπ

∫ i∞

−i∞
sin(πν)Kν(κr)

(
cos(ν[Φ2 − ϕ])

cos(ν[Φ2 − Φ1])
H(ν) +

+
sin(ν[Φ1 − ϕ])

sin(ν[Φ1 − Φ2])
h̃(ν)

)
dν, ϕ ∈ [Φ1,Φ2],

u3(r, ϕ) =
1

iπ

∫ i∞

−i∞
sin(πν)Kν(κr)

cos(ν[π − ϕ])

cos(ν[π − Φ2])
H3(ν) dν, ϕ ∈ [Φ2, π],

(8)

where κ =
√−E . Kontorovich–Lebedev representation (8) separates the variables r and ϕ, and ν is the

separation variable. If the integrals converge uniformly and rapidly, then the equations are satisfied, because

it can be verified that

(κr)2
{

d2

d(κr)2
+

1

κr

d

dκr
−
(
1 +

ν2

(κr)2

)}
Kν(κr)uν(ϕ) +

(
d2

dϕ2
+ ν2

)
uν(ϕ)Kν(κr) = 0,

where uν(ϕ) = cos(νϕ) or uν(ϕ) = sin(νϕ). We choose the integrands in (8) so as to satisfy Neumann

condition (2). Now we consider boundary conditions (3). First, we proceed formally to formulate sufficient

conditions for the unknownsH1(ν), H(ν), h̃(ν), andH3(ν), i.e., to describe an appropriate class of functions.

The conditions for the continuity of u on l1,2 in (3) imply the relations

H1(ν) = H(ν),

1

cos(ν[Φ2 − Φ1])
H(ν) + h̃(ν) = H3(ν),

(9)

and hence only two functions are independent, for example, H(ν) and H3(ν), while the other functions can

be expressed in terms of them, see (9). From Robin-type conditions (3), we have

1

κr

(
∂u1

∂ϕ
− ∂u2

∂ϕ

)∣∣∣∣
ϕ=Φ1

− γ1u1|ϕ=Φ1 =

=
1

iπ

∫ i∞

−i∞
dν sin(πν)

{
Kν(κr)

κr

[
H(ν)

−ν sin(ν[Φ2 − Φ1])

cos(ν[Φ2 − Φ1])
+ h̃(ν)

−ν

sin(ν[Φ2 − Φ1])
−

−H(ν)ν tan(Φ1ν)

]
− γ1

κ
H1(ν)Kν(κr)

}
= 0.

We use the identity
Kν(z)

z
=

Kν+1(z)−Kν−1(z)

2ν
to find

1

iπ

∫ i∞

−i∞
dν (− sin(πν))

{
Kν+1(κr) −Kν−1(κr)

2

[
H(ν)

(
sin(ν[Φ2 − Φ1])

cos(ν[Φ2 − Φ1])
+ tan(Φ1ν)

)
+

+ h̃(ν)
1

sin(ν[Φ2 − Φ1])

]
+

2γ1
κ

H(ν)
Kν(κr)

2

}
=

=
1

2iπ

∫ i∞+1

−i∞+1

dν sin(πν)Kν(κr)h1(ν − 1)−

− 1

2iπ

∫ i∞−1

−i∞−1

dν sin(πν)Kν(κr)h1(ν + 1)−

− 2γ1
κ

1

2iπ

∫ i∞

−i∞
dν sin(πν)H(ν)Kν(κr) = 0,
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where we replaced the integration variables as ν ± 1 → ν and introduced

h1(ν) := H(ν)(tan(ν[Φ2 − Φ1]) + tan(Φ1ν)) +
h̃(ν)

sin(ν[Φ2 − Φ1])
.

Here, h̃(ν) is expressed in terms of H(ν) and H3(ν) due to (9). Deforming the integration contours to the

imaginary axis in the first two integrals given above, we obtain

1

2iπ

∫ i∞

−i∞
dν sin(πν)Kν(κr)

[
h1(ν − 1)− h1(ν + 1)− 2γ1

κ
H(ν)

]
= 0.

As a result, we conclude that if the equation

h1(ν + 1)− h1(ν − 1) +
2γ1
κ

H(ν) = 0

is satisfied, then the Robin condition holds on l1 in (3). Similarly, from the boundary condition on l2,

taking the above consideration into account, we obtain the system of equations

h1(ν + 1)− h1(ν − 1) +
2γ1
κ

H(ν) = 0,

h2(ν + 1)− h2(ν − 1) +
2γ2
κ

H3(ν) = 0,

(10)

where

h2(ν) := H3(ν)(tan(ν[π − Φ2])− cot(ν[Φ2 − Φ1])) +
H(ν)

sin(ν[Φ2 − Φ1])
.

We write system (10) in terms of an unknown 2-vector h(ν) = (h1(ν), h2(ν))
T. We obtain an equation

of form (11), which we study in Sec. 3,

h(ν + 1)− h(ν − 1)− 2iΛaW(ν)h(ν) = 0, (11)

where we introduce the notation Λ = γ1/(2κ) and H(ν) = (H(ν), H3(ν))
T,

T(ν) =

⎛
⎜⎝
tan(ν[Φ2 − Φ1]) + tan(Φ1ν)− sec(ν[Φ2 − Φ1])

sin(ν[Φ2 − Φ1])

1

sin(ν[Φ2 − Φ1])
1

sin(ν[Φ2 − Φ1])
tan(ν[π − Φ2])− cot(ν[Φ2 − Φ1])

⎞
⎟⎠ ,

a =

(
1 0

0 a

)
,

a := γ2/γ1 < 1, and

W(ν) = 2iT−1(ν) =
2i

D(ν)
×

×

⎛
⎜⎜⎝
tan(ν[π − Φ2])− cot(ν[Φ2 − Φ1])

−1

sin(ν[Φ2 − Φ1])

−1

sin(ν[Φ2 − Φ1])

(
tan(ν[Φ2 − Φ1]) + tan(Φ1ν)− sec(ν[Φ2 − Φ1])

sin(ν[Φ2 − Φ1])

)
⎞
⎟⎟⎠ ,

where

D(ν) := detT(ν) = (tan(ν[Φ2 − Φ1]) +

+ tan(Φ1ν))(tan(ν[π − Φ2])− cot(ν[Φ2 − Φ1]))− 2 tan(ν[π − Φ2])

sin(2ν[Φ2 − Φ1])
.
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We say that a vector h(ν) is of class M of meromorphic vectors if its components hj(ν), j = 1, 2,

satisfy the conditions

• hj(ν) = hj(−ν);

• hj is holomorphic in Π1+δ \ {±1}, Π1+δ = {ν ∈ C : |Re ν| < 1 + δ} for some δ > 0;

• |hj(ν)| < const | exp(iν[π/2 + δ0])|, ν → i∞, ν ∈ Π1+δ for δ0 ∈ (0, π/2).

We further assume that h(ν) is of class M, and hence W satisfies the estimate W(ν) = I+O(e±iq∗ν) (with

q∗ = 2min{Φ2 − Φ1,Φ1, π − Φ2} > 0 in our case). The explicit description of the class of potentials W is

discussed in Sec. 3.

Solutions from the class M ensure the uniform convergence of integrals in (8) due to the asymptotics

Kν(z) ∼ const
ν−1/2 cos(ν[π/2 + | arg(z)|])

sin(πν)

as ν → i∞ with Re(ν) = 0, | arg z| � π/2, and a fixed |z|. We arrive at the following assertion.

Proposition 2.1. Assume that h( · ) is of class M and provides a nontrivial solution of Eq. (11) for

some Λ. Then the Kontorovich–Lebedev integrals in (8) determine a classical solution of problem (1)–(3)

for the corresponding E = −γ2
1/4Λ

2.

We note that condition (4) can be verified using the Kontorovich–Lebedev representations (see 5.2.2

in [18]). But the verification of estimate (5) is more difficult and follows from the asymptotics for the

eigenfunction that we obtain below.

3. FD equations with a characteristic parameter and reduction
to integral equations

We study systems of two coupled FD equations (11) for the unknown vector h(ν)=(h1(ν), h2(ν))
T∈M;

Λ is a characteristic (in general, complex) parameter,2 and W( · ) is a potential, that is, a matrix with

meromorphic coefficients.

It turns out that under certain conditions on the potential W, the equation has nontrivial solutions

from the above class, and these solutions exist only for some real values of Λ that form a discrete set Cd,

finite or infinite. By definition, this discrete set is called the set of characteristic values Λm, m = 1, 2, . . . ,

of Eq. (11). The corresponding solutions from M are called the vector eigenfunctions hm of the equation.

In what follows, we also define the set of essential values Ce of the characteristic parameter Λ. But the

focus of our attention is on the set of characteristic values Cd. The description of the set of characteristic

values Cd and the essential characteristic set Ce for Eq. (11), as well as of the corresponding solutions,

is called the description of the spectral properties of Eq. (11). It turns out that these sets are naturally and

canonically related to the spectrum of some self-adjoint integral operator K.

We consider the class W of meromorphic potentials W( · ) such that

• W(ν) = −W(−ν) is odd;

• W(ν) = I+ o(1) as ν → ±i∞ along the imaginary axis;

• W(ν) ∼ Cν−1 as ν → 0, where C is a constant matrix;

• W(it) > 0 for t > 0.

2With applications in mind, it is convenient to separate the constant matrix a multiplying the matrix potential.
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It is significant in what follows that the potential W is positive on the positive part of the imaginary axis.

In applications, the sharper estimate W(ν) = I+O(e−b|ν|) (or W(ν) = I+O(1/ν)) holds as ν → i∞ along

the imaginary axis, b > 0. The following lemma is used to obtain integral equations (see the proof in [7])

from FD equations.

Lemma 3.1. Suppose that q(ν) is holomorphic for ν ∈ Πδ for δ > 0 and |q(ν)| � cqe
−κ∗|ν|, |ν| → ∞,

κ∗ > 0 in this strip, the function q is odd, q(ν) = −q(−ν), and meromorphic. Then the even solution s( · )
of the equations

s(ν ± 1)− s(−ν ± 1) = ±2iq(ν)

that is regular (holomorphic) in the strip ν ∈ Π1+δ \ {±1} (ν = 0 is a simple pole of q) and exponentially

decreases in it as |ν| → ∞, is given by the expression

s(ν) = −1

2

∫ i∞

−i∞
dτ q(τ)

sinπτ

cos πτ + cosπν
, ν ∈ Π1+δ,

and s(ν) can be extended as a meromorphic function by means of FD equations.

Applying Lemma 3.1 to Eq. (11) and taking the properties of W and h into account, we obtain

h(ν) = −Λ

2

∫ i∞

−i∞
dτ

sinπτ

cosπτ + cosπν
aW(τ)h(τ), ν ∈ Π1+δ. (12)

Because the integrand in (12) is even, we reduce the integration to the semiaxis [0, i∞), introduce a new

unknown vector

q(ν) =
√
W(ν)h(ν), W(ν) > 0, ν ∈ [0, i∞), (13)

and obtain the sought equation

q(ν) = −Λ

∫ i∞

0

dτ
sinπτ

cosπτ + cosπν

√
W(ν)a

√
W(τ)q(τ), (14)

where ν ∈ [0, i∞).

The procedure of reconstructing the unknown meromorphic vector h(ν) from class M from its value

on the semiaxis [0, i∞) is as follows. Let there be an integrable (and hence continuous) solution q(ν) of

integral equation (14) on [0, i∞) for some Λ, which exponentially decreases at infinity. We use the oddness

and define q(ν) on the entire imaginary axis. Defining h(ν) on the imaginary axis by (14), we continue it

into the strip Πδ for some δ > 0. Integral representation (12) allows calculating the values of h(ν) in the

regularity strip Π1+δ. Indeed, calculating h(ν) in some neighborhood of the imaginary axis, we see that

the integral in the right-hand side of (12) defines a holomorphic function in the strip Π1+δ, because the

denominator has no zeros in this strip and the integral converges exponentially and uniformly in ν. (Indeed,

we shift the contour iR to the strip Πδ such that h(ν) in the left-hand side of (12) is holomorphic in the

strip Π1+δ.) The vector h(ν) can be continued as a meromorphic function to the whole plane C by means

of FD equation (11).

Lemma 3.2. Let, for some Λ, q be a solution of integral equation (14) that is integrable on [0, i∞)

and exponentially decreases at infinity. Then the corresponding nontrivial solution h( · ) ∈ M of FD

equation (11) exists.
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Lemma 3.2 shows that nontrivial solutions of integral equation (14) for some characteristic value of the

parameter Λ must be studied. For this, it is convenient to transform the equation to some form involving

integration over a finite interval. We introduce a new integration variable and a new unknown function as

x =
1

cos(πν)
, y =

1

cos(πτ)
, x ∈ [0, 1],

r(x) = q(it)|
t= 1

π ln(1/x+
√

1/x2−1)
, t > 0

and then obtain the equation

r(x) = Λ(Kr)(x), (15)

where K is an integral operator in L2([0, 1];C
2),

(Kr)(x) =
1

π

∫ 1

0

dy

x+ y

√
w(x)a

√
w(y)r(y),

w(x) = W(it)|
t= 1

π ln(1/x+
√

1/x2−1)
, t > 0.

Together with the characteristic parameter Λ, we introduce the spectral parameter μ = Λ−1 and the

equation

(Kr)(x) = μr(x) (16)

in L2([0, 1];C
2).

It is now natural to study the properties of the operator K with a symmetric kernel that can be

represented as √
w(x)a

√
w(y) = a+ o(1), (x, y) → (0, 0),

where, in applications, instead of o(1), a sharper estimate holds in the formO(xb+yb), where (x, y) → (0, 0),

b > 0, i.e., the matrix has elements decreasing like O(xb + yb) as (x, y) → (0, 0). We also note that w(x)

behaves like O(1/
√
1− x) as x → 1. This shows that the following assertion is true.

Lemma 3.3. The operator K : L2([0, 1];C
2) → L2([0, 1];C

2) in (16) is bounded and self-adjoint.

The operator K is called a perturbation of the bounded self-adjoint matrix operator M, where M is

the so-called Mehler operator3 defined in L2([0, 1];C
2) by the expression

(Mr)(x) =
1

π

∫ 1

0

dy

x+ y
ar(y).

Indeed, the operator K can be represented as

K = M+V (17)

according to the kernel representation√
w(x)a

√
w(y)

x+ y
=

a

x+ y
+

v(x, y)

x+ y
,

where v(x, y) :=
√
w(x)a

√
w(y) − ao(1) (in our case, O(xb + yb)) as (x, y) → (0, 0), b > 0. The integral

operator V in (17) is defined in L2([0, 1];C
2) as

(Vr)(x) =
1

π

∫ 1

0

dy

x+ y
v(x, y)r(y).

In what follows, we assume that this operator V belongs to the Hilbert–Schmidt class S2, which is ensured

by the properties of the function v(x, y), in particular, if v(x, y) =
√
w(x)a

√
w(y) − a = O(xb + yb)

as x, y → 0.

3Here, we follow the terminology proposed by D. R. Yafaev.
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In Appendix A, we study the spectral properties of the unperturbed Mehler operator M and explicitly

diagonalize it. The content of the Appendix actually follows the well-known Mehler formulas obtained

in 1881 [26]. The scalar operator M ,

(Mu)(x) =
1

π

∫ 1

0

dy

x+ y
u(y)

has a simple absolutely continuous spectrum σa(M) = [0, 1], and the eigenfunctions of the continuous

spectrum have been obtained explicitly (see [27] and [28]):

Pp(x) :=

√
p tanh(πp)

x
Pip−1/2(1/x),

where Pip−1/2( · ) is the Legendre function.

The operator K is a complex perturbation of the Mehler operator, which permits studying its spectral

properties needed in investigating the FD equations by traditional methods.

4. Spectrum of the perturbed Mehler operator K = M + V,
discrete component of the spectrum of K, and its finiteness

We recall that we assumed the perturbationV to be of the Hilbert–Schmidt class S2 and σe(M) = [0, 1].

We use the Weyl theorem on the preservation of the essential spectrum under compact perturbations;

as a result, we obtain the following assertion.

Lemma 4.1. The essential spectrum σe(K) coincides with the interval [0, 1] if the perturbation V is

compact.

It follows from the properties of the kernel that the operatorK is positive. Hence, it can have a discrete

component of the spectrum only to the right of σe(K). The existence of a discrete component K is of special

interest because each point μ∗ of this component corresponds to the existence of a nontrivial solution from

a given class for FD equation (11) for the corresponding Λ∗ = 1/μ∗. In this section, we consider some

sufficient conditions formulated in terms of the perturbation V and, possibly, also with the help of the

spectral characteristics of the operator M. These sufficient conditions ensure that the discrete part of the

spectrum σd(K) is not empty.

4.1. Simple sufficient condition for σd(K) �=∅∅∅. We find u such that (u,u)H=1 (H=L2([0,1],C
2))

and

(Ku,u)H > 1. (18)

Inequality (18) means that the discrete component of the spectrum is not empty. The strategy to verify

the inequality is simple: we present a simple two-dimensional normalized vector for which inequality (18)

holds under certain conditions on the potential. The choice of such a vector is directly related to a special

form of the kernel of the integral operator K. We take the normalized vector u = C(aw)−1/2u0, where

C = ‖(aw)−1/2u0‖−1 and u0 ∈ C
2 is a constant vector. We recall that w > 0. Noting that

√
w(x)a

√
w(y) = (

√
aw(x))∗

√
aw(y),

we then find

(Ku,u) =
1

π

∫ 1

0

dx

∫ 1

0

dy
〈u0,u0〉C2

x+ y
> 1,
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where u0 ∈ C
2 is a constant vector with complex coordinates u0 = (r1 + ig1, r2 + ig2)

T, and hence the

above inequality becomes

2 ln 2

π
(r21 + g21 + r22 + g22) > 1. (19)

The normalization condition takes the form

(u,u)H = ((aw)−1u0,u0)H =

∫ 1

0

dx 〈(aw)−1(x)u0,u0〉 = 〈Bu0,u0〉C2 = 1,

where the elements bik of a positive symmetric matrix B > 0 are

bik :=

∫ 1

0

dx {(aw)−1(x)}ik.

Finally, we write this condition in the form

b11(r
2
1 + g21) + 2b12(r1r2 + g1g2) + b22(r

2
2 + g22) = 1. (20)

It is natural to seek a vector (r1, g1, r2, g2)
T ∈ R

4 that provides the absolute maximum of the left-hand

side of (19) under condition (20). This is the classical problem for a conditional extremum, which is solved

by using Lagrange multipliers, one multiplier L in our case, and by introducing the Lagrange function

L(r1, g1, r2, g2) = (r21 + g21 + r22 + g22)− L[b11(r
2
1 + g21) + 2b12(r1r2 + g1g2) + b22(r

2
2 + g22)− 1].

Using the necessary condition for the extremum of L (i.e., ∇L = 0) that takes the form of a system of

linear equations

LBr = r, LBg = g,

we necessarily conclude that r = (r1, r2)
T and g = (g1, g2)

T must coincide with an eigenvector of the

symmetric matrix B > 0 in R
2, with L−1 =: ω being a spectral parameter. An eigenvector corresponds to

each of the two positive eigenvalues ω = ωmin(B) and ω = ωmax(B). We consider the minimal eigenvalue

ω = ωmin and the corresponding eigenvector e. To obtain the largest value in the left-hand side of (19),

we take r = e and g = e and then substitute it in condition (20). From normalization condition (20),

we then have 2〈Be, e〉 = 1 or

ωmin(B)(r21 + g21 + r22 + g22) = 1.

As a result, sufficient condition (19) becomes

2 ln 2

π
> ωmin(B). (21)

Condition (21) is determined by the matrix B, and is therefore in fact controlled by the potential W.

An analogue of this condition in the “scalar” case of one equation was used in [7], where it was verified

numerically for a specific potential in the problem under study. In what follows, we apply condition (21) in

the example of a meromorphic potential depending on the parameters of the considered problem and verify

it numerically.
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4.2. An alternative sufficient condition for σd(K) �= ∅∅∅. As in Sec. 4.1, we start with condi-

tion (18) and substitute a normalized sequence un, assuming that this condition is satisfied for some n

and u = un. This would imply that the discrete component is not empty. To construct such a sequence,

we consider a singular (Weyl) sequence un ∈ H, n = 1, 2, . . . , corresponding to the point μ = 1 of the

essential spectrum of the Mehler operator M. For example, ‖un‖ = 1, un is an orthonormal sequence, i.e.,

un ⇀ 0 (weakly) such that ‖Mun − un‖ → 0 as n → ∞. Obviously, we obtain

([M +V]un,un) = ‖un‖2 + ([M+V − I]un,un) = 1 + ([M+V − I]un,un),

and we conclude from (18) that the inequality

([M+V − I]un,un) > 0, (22)

which holds for some n, is a sufficient condition for the discrete spectrum to be nonempty for μ > 1.

Importantly, the partition of unity Et for the Mehler operator M allows constructing a singular sequence

explicitly.

We consider a numerical sequence εn > 0 (εk > εk+1), εn → 0 (for example, εn = 1/n) and

δn = (1− εn, 1− εn+1), |δn| = εn − εn+1.

We choose an orthonormal sequence un such that un ∈ E(δn)H, noting that dimE(δn)H = ∞, where

E(δ) = Eb−0 −Ea+0, δ = (a, b). Using the spectral theorem, we then obtain

([M− I]un,un) =

∫ ∞

−∞
(t− 1) d(Etun,un) =

∫
δn

(t− 1) d(Etun,un),

because Etun = EtE(δn)h/‖E(δn)h‖ = 0 for h ∈ H and δn∩(−∞, t) = ∅. We also recall that σ(M) = [0, 1].

We have

([V +M− I]un,un) �
1

π

∫ 1

0

dxun(x)

∫ 1

0

dy
v(x, y)

y + x
un(y)− εn(E(δn)un,un),

because 1− t � εn for t ∈ [1− εn, 1− εn+1] and

−
∫
δn

(t− 1) d(Etun,un) � εn(E(δn)un,un) = εn(un,un) = εn.

With (22) taken into account, we now obtain Theorem 2.1 in Sec. 2.2.

We introduce

Qn(x, y) = v(x, y)un(y)− εnπ(x + y)un(x).

Condition (6) can be equivalently written in the form

1

π

∫ 1

0

dx

∫ 1

0

dy
〈Qn(x, y),un(x)〉C2

y + x
> 0 (23)

for some n = 1, 2, . . . , where un is the Weyl sequence corresponding to μ = 1, with ‖un‖ = 1 and εn → 0

as n → ∞. Conditions (22), (21), or (19) are sufficient for the existence of a discrete component of

the spectrum to the right of [0, 1]. We note that these conditions depend on the perturbation potential√
w(x)a

√
w(y) − a and on the singular sequence un, while it can be efficiently constructed because the

spectral measure of the Mehler operator M is known. After some calculations, we obtain the sequence

un = zn/‖zn‖,
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which is orthonormal, and zn = E(δn)h, h = (h1, h2)T ∈ H and

zn(x) = (z1n(x), z
2
n(x))

T,

where

z1n(x) =
1

π

∫ pn

pn+1

dpPp(x)(h
1)∗(p), (24)

z2n(x) =
1

π

∫ pn/a

pn+1/a

dpPp(x)(h
2)∗(p), (25)

and

pn =
1

π
ln

(
1

[1− εn]
+

√
1

[1− εn]2
− 1

)
= O(

√
εn)

and h∗( · ) is a modified Mehler–Fock transform of h( · ) (see Appendix A).

We note that sufficient conditions are determined by the potential w, which depends on parameters of

the problem. In our example, these are a = γ2/γ1, Φ1, and Φ2. It is natural to expect (and this is verified

numerically) that there exists a range of these parameters such that the discrete spectrum of K indeed

exists. In a similar “scalar” problem [7], we also numerically verified a similar sufficient condition for some

range of parameters.

4.3. Birman–Schwinger principle and the finiteness of the discrete spectrum. We now

discuss the problem of the finiteness of the discrete spectrum. The approach used in this section is quite

similar to that proposed for perturbations of the Carleman operator by Hankel operators in [25] and is

based on the application of the Birman–Schwinger principle. In our case, this principle takes the form of

the following theorem.

Theorem 4.1. Let M0 be a bounded self-adjoint operator such that M0 � 1. Let V0 � 0, and

let V0 ∈ S∞ (i.e., compact). Then the total number of eigenvalues (counted with multiplicities) of the

operator K0 = M0 + V0 that are greater than μ (μ ≥ 1) is equal to the total number of eigenvalues of

the operator B(μ) = V
1/2
0 [μ−M0]

−1V
1/2
0 .

Using representation (50) for the resolvent, we obtain

B(μ) = μ−1(V +V1/2AμV
1/2). (26)

We introduce the operator

Q = QI, [Qf ](t) = 〈ln t〉f(t),

where 〈ln t〉 = ln(2/t), f ∈ L2(0, 1). It is natural to define Qβ = QβI, β ∈ R.

By (50), A1 is an integral operator with the kernel a(x, y; 1) admitting estimate (51) with μ = 1.

The following assertion holds.

Lemma 4.2. Let α > 3/2. Then

lim
μ→1

‖Q−α(Aμ −A1)Q
−α‖2 = 0 (27)

in the Hilbert–Schmidt operator norm.
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To prove this lemma, we have to verify that

lim
μ→1

∫ 1

0

∫ 1

0

〈ln t〉−2α‖a(x, t, μ)− a(x, t, 1)‖2
C2→C2〈lnx〉−2α dx dt = 0.

By Lebesgue’s dominated convergence theorem, it suffices to prove that there exists an integrable majorant

of the integrand. By estimate (51), the majorant has the form

C〈ln t〉−2α 〈ln t〉2〈log x〉2
tx

〈lnx〉−2α

and obviously belongs to L1((0, 1)× (0, 1)) for 2α > 3.

Lemma 4.2 implies the following assertion.

Lemma 4.3. Let α > 3/2 and let a self-adjoint operator V ≥ 0, V ∈ S2, be of Hilbert–Schmidt class;

in addition, let the operator QαVQα ∈ S∞ be compact. Then the operator B(μ) in (26) has the limit

B(1) = V +V1/2A1V
1/2 (28)

in the Hilbert–Schmidt norm ‖ · ‖2 as μ → 1.

The proof follows from the chain of relations

‖B(μ)−B(1)‖22 = ‖V1/2QαQ−α(Aμ −A1)Q
−αQαV1/2‖22 =

= ‖QαVQαQ−α(Aμ −A1)Q
−α‖22,

where ‖A‖22 = 〈A,A〉S2 , the relation 〈A,B〉S2 := Tr(B∗A) = Tr(AB∗), and Lemma 4.2.

Let N(μ) be the total number of eigenvalues of the operatorK = M+V located to the right of μ, μ � 1.

It follows from the Birman–Schwinger principle that N(μ) ≤ ‖B(μ)‖22, and then Lemma 4.3 implies the

estimate

N(1) � ‖B(1)‖22.

Using (28), we further obtain

‖B(1)‖2 � (‖V‖2 + ‖QαVQα‖‖Q−αA1Q
−α‖).

Using the properties of the kernel a(x, t, 1), we introduce

G2
α :=

∫ 1

0

∫ 1

0

〈ln t〉−2α‖a(x, t, 1)‖2
C2→C2〈lnx〉−2α dx dt.

This leads to the estimate

N(1) � (‖V‖2 +Gα‖QαVQα‖)2 (29)

and to Theorem 2.2 in Sec. 2.2.

We note that if we replace the condition α > 3/2 in Theorem 2.2 with α � 3/2, then the spectrum to

the right of μ = 1 is infinite.
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5. Spectral properties of FD equation (11)

We apply the results obtained above for the perturbed Mehler operator M + V to the system of

FD equations. We now assume that one of sufficient conditions (23) or (21) (also see (6)) is satisfied and

μm = Λ−1
m ∈ σd(M+V) is the eigenvalue corresponding to an eigenfunction rm(x). Then the corresponding

solution hm(ν) = W−1/2(ν) rm(x)|x=1/ cos(πν) (see (13)) satisfies Eq. (12) for Λ = Λm. Moreover, as was

described above, the solution hm can be extended as a meromorphic function, is a solution of Eq. (11), and

admits the estimate ∫ i∞

0

| sinπτ | ‖
√
W(τ)hm(τ)‖2

C2 |dτ | < ∞. (30)

Here, we also show that together with estimate (30), the solution hm satisfies the following estimate on the

imaginary axis:

hm(ν) = O(eiν[π−τm]), ν → i∞, (31)

where τm ∈ (0, π/2) can is uniquely defined by the equation sin τm = Λm. Asymptotic estimate (31) is used

in what follows to obtain the asymptotics of an eigenfunction of As.

We use the Fourier transformation along the imaginary axis

χ(ζ) =

∫
iR

eiζνh(ν) dν, h(ν) = −v.p.

2π

∫
iR

e−iζνχ(ζ) dζ

and take Eq. (11) into account. For the Fourier transform H( · ) of h( · ), we obtain

[sin ζI− Λa]H(ζ) + Λ

∫
iR

eiζν [aW(ν) + a]h(ν) dν = 0,

and then recalling that Λ = Λm ∈ (0, 1), we introduce τm ∈ (0, π/2), sin τm := Λm and obtain the relation

H(ζ) = − sin τm[sin ζI− sin τma]−1

∫
iR

eiζν [aW(ν) + a]h(ν) dν. (32)

Representation (32) allows defining a strip on the complex ζ plane where H(ζ) is holomorphic. We know

that h(ν) admits the estimate |h(ν)| � Ce−π|ν|/2 on the imaginary axis as ν → ±i∞, which means that

the function H(ζ) is holomorphic in the strip Π(−π/2, π/2) := {ζ ∈ C : −π/2 < Re(ζ) < π/2}. Our

goal is to show that it is holomorphic in a wider strip, namely, in Π(−π+ τm, π− τm), where τm ∈ (0, π/2)

is defined above. We note that H(ζ) is even because h(ν) is even. As a result, it suffices to define the

regularity strip of the integral in the right-hand side of (32) only for Re(ζ) > 0. We consider the right-hand

side of representation (32). Obviously, the matrix [sin ζI − sin τma]−1 has simple poles at ζ = π − τm in

the first row, and at ζ = π − tm in the second row, where sin tm = a sin τm and tm ∈ (0, π/2), tm � τm.

We note that these poles are the nearest to the imaginary axis for this factor in the right-hand side of (32).

We now consider the integral in the right-hand side of (32). It turns out to be holomorphic in a strip wider

than Π(−[π − τm], π − τm). To verify this, we use the representation (Re(ζ) > 0) for

∫
iR

eiζν [aW(ν) + a]h(ν) dν =

∫
iR

eiζν [aW(ν) + ia tan(bν)]h(ν) dν +

+

∫
iR

eiζν [−ia tan(bν) + a sign(iν)]h(ν) dν +

+

∫
iR

eiζν [−a sign(iν) + a]h(ν) dν.
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In the last term, the integral is taken along iR+, because [−a sign(iν)+a] = 0 on the negative part of the axis

and hence the integral is holomorphic for Re(ζ) > 0. Assuming that the asymptotics W(ν) = I+O(e±iq∗ν)

(q∗ = 2min{Φ2 − Φ1,Φ1, π − Φ2} > 0 in our example below) as ν → ±i∞ holds on the imaginary

axis, we see that the first integral is regular in the strip Π(−π + τm − q∗, π − τm + q∗); we assume

that b > q∗. If we take b > 0 sufficiently large, we can conclude that the second integral is holomor-

phic in Π(−[2b+ π − τm], 2b+ π − τm). We see that H( · ) is a holomorphic function in Π(−π+τm, π−τm);

using the inverse Fourier transformation, we then obtain the following assertion.

Lemma 5.1. The vector H( · ) is holomorphic in the strip Π(−π + τm, π− τm) and h(ν) then has the

asymptotics

h(ν) = O(eiν[π−τm]), ν → i∞,

in a neighborhood of the imaginary axis if W(ν) = I+O(eiq∗ν), q∗ > 0.

We note that Lemma 5.1 is also true if the constraints on the behavior of the potential at infinity are

weaker, for example, if W(ν) = I +O(1/ν). The estimate ‖H(ζ)‖ < Ce−α0|ζ|, α0 > 1 and Im(ζ) → ∞, is

also true because the function h is holomorphic in the strip Π(−1− δ, 1 + δ).

We now describe the characteristic set Cd ∪ Ce of the values of Λ for Eq. (11), i.e., those values of Λ

for which the equation has a nontrivial solution from the corresponding class. The set of characteristics

values Cd is nonempty and finite if and only if this is true for σd(K). The statements from the preceding

sections describe conditions sufficient for this.4 By definition, Λm = 1/μm belongs to the set Cd of charac-

teristic values of Eq. (11) if μm = (sin τm)−1 ∈ σd(K). Obviously, Cd ⊂ [0, 1]. Similarly, Λ ∈ Ce = [1,∞),

i.e., by definition, it belongs to the essential characteristic set if μ = Λ−1 ∈ σe(K) = [0, 1], where M+V is

a perturbation of the Mehler operator related to Eq. (11) with the potential W ∈ W . In this case, we have

|H(ν)| < const |eiνπ/2)|, ν → i∞, ν ∈ Π1+δ. Using the results in the preceding sections, we obtain the

following assertion.

Proposition 5.1. The set Cd formed by characteristic values of Eq. (11) is nonempty if the potential

w(x) = W|x=1/ cosπν (and the potential v(x, y) :=
√
w(x)a

√
w(y) − a) satisfies sufficient conditions (21)

or (23), (6). Under the conditions of Theorem 2.2, this set is finite. Estimates (31) hold for the corresponding

solutions, and the solutions are of class M.

5.1. Solvability of an FD equation for characteristic values and eigenvalues of the oper-

ator As. We now use the sufficient condition obtained above for the existence of characteristic numbers

of Eq. (11) and verify this condition for a domain of parameters. Condition (21) is determined by the

matrix B and hence in fact by the potential W. An analog of this condition in the “scalar” case is used

in [7], where it was verified numerically for some domain of parameters of the problem.

Table 1. Values F (Φ1) = 2 ln 2/π − ωmin(B[Φ1]). The discrete spectrum exists for F (Φ1) > 0 in

accordance with condition (21). For example, a := γ2/γ1 = 0.5, Φ2 = 2π/3 ≈ 2.094 (see Fig. 1)

1 2 3 4 5 6 7 8 9

Φ1 1.885 1.676 1.466 1.257 1.047 0.8378 0.5236 0.3142 0.1047

F (Φ1) 0.0506 0.0299 0.0125 −0.0008 −0.0092 −0.012 −0.0043 0.0092 0.029

A similar verification of sufficient condition (21) for the potential W(ν) is presented in Table 1, which

shows the results of calculations of F (Φ1) = 2 ln 2/π − ωmin(B[Φ1]) depending on Φ1; positive values then

correspond to the case where the discrete component σd(K) is nonempty. The parameter Φ2 = 2π/3 is

4Solutions (11) corresponding to Λ = μ−1 and μ ∈ σe(M + V ), i.e., to the essential spectrum, can also be described.
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Fig. 2. Integration contour γ0 = γ+
0 ∪ γ−

0 and singularities.

fixed and a = 0.5. Obviously, we have the range of Φ1 values for which condition (21) is not satisfied,

i.e., F (Φ1) < 0. Thus, there exists a set of Λm values, m = 1, 2, . . . , Nl (which is finite in our case by

Theorem 2.2 applied to the potential W(ν)), and the eigenvalues Em of the operator As are given by

Em = −
[

γ1
2Λm

]2
.

We now proceed to studying the asymptotics of the eigenfunction of As corresponding to the eigen-

value Em.

6. Asymptotics of the eigenfunction

6.1. Sommerfeld integral representations for the eigenfunctions of As. To verify that repre-

sentation (8) is an eigenfunction, we study its behavior as r → ∞. Calculating the asymptotics, we show

that it decreases exponentially. But the direct replacement of the MacDonald function with its asymptotics

in the integrand Kν(κr) ∼
√

π
2
e−κr

κr makes the integral divergent, and hence this direct way does not lead

to the desired result. Instead, we use the Sommerfeld integral representation

Kν(κr) =
1

2iπ

∫
γ0

dζ eκr cos ζ sin νζ

sinπν

with the integration contour shown in Fig. 2, substitute it in the integral, and then change the order of

integrations. In Ω1, Ω2, and Ω3, we obtain

u1m(r, ϕ) =
1

2iπ

∫
γ0

dζ eκmr cos ζF1(ζ, ϕ),

u2m(r, ϕ) =
1

2iπ

∫
γ0

dζ eκmr cos ζF2(ζ, ϕ),

u3m(r, ϕ) =
1

2iπ

∫
γ0

dζ eκmr cos ζF3(ζ, ϕ).

(33)
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The angles have the respective values Φ1, Φ2 − Φ1, and π − Φ2, and

F1(ζ, ϕ) =
1

2i

∫ i∞

−i∞
sin(ζν)

cos(νϕ)

cos(Φ1ν)
H1m(ν) dν,

F2(ζ, ϕ) =
1

2i

∫ i∞

−i∞
sin(ζν)

(
cos(ν[Φ2 − ϕ])

cos(ν[Φ2 − Φ1])
Hm(ν) dν +

+
sin(ν[Φ1 − ϕ])

sin(ν[Φ1 − Φ2])
h̃m(ν)

)
dν,

F3(ζ, ϕ) =
1

2i

∫ i∞

−i∞
sin(ζν)

cos(ν[π − ϕ])

cos(ν[π − Φ2])
H3m(ν) dν.

(34)

We omit the index m in the notation unless this leads to a confusion.

We study the asymptotic behavior of Sommerfeld integrals (33) under the assumption that the inte-

grands in (34) are known after solving FD equations (11). The idea of such an investigation is traditional.

In the framework of the saddle-point method, the integration contour γ0 in (33) must be deformed into the

steepest descent contour γ±π
0 = {ζ : Re(ζ) = ±π}. In the process of such a deformation, some singularities

of the integrand (poles) can be captured, which then contribute to the asymptotics along with the saddle

points ζ = ±π. It is therefore necessary to investigate the behavior of the functions F1, F2, and F3 on the

complex ζ plane and, in particular, to determine the singularities that are captured in the process contour

deformation.

6.2. Analytic properties of F1(ζ, ϕ), F2(ζ, ϕ), and F3(ζ, ϕ). It is convenient to transform

integral representations (34) starting with F1(ζ, ϕ),

F1(ζ, ϕ) =
1

2i

∫ i∞

−i∞

1

2

(
sin(ν[ζ + ϕ])

cos(Φ1ν)
+

sin(ν[ζ − ϕ])

cos(Φ1ν)

)
H1(ν) dν =

= f1(ζ + ϕ) + f1(ζ − ϕ),

(35)

where

f1(ζ) =
1

4i

∫ i∞

−i∞

sin(νζ)

cos(Φ1ν)
H1(ν) dν =

1

4i

∫ i∞

−i∞

eiνζ

i cos(Φ1ν)
H1(ν) dν (36)

and the function f1(z) is odd, f1(z) = −f1(−z). In the same way, we obtain

F3(ζ, ϕ) =
1

2i

∫ i∞

−i∞

1

2

(
sin(ν[ζ + (π − ϕ)])

cos(ν[π − Φ2])
+

sin(ν[ζ − (π − ϕ)])

cos(ν[π − Φ2])

)
H3(ν) dν =

= f3(ζ + [π − ϕ]) + f3(ζ − [π − ϕ]), (37)

where

f3(ζ) =
1

4i

∫ i∞

−i∞

sin(νζ)

cos(ν[π − Φ2])
H3(ν) dν =

1

4i

∫ i∞

−i∞

eiνζ

i cos(ν[π − Φ2])
H3(ν) dν (38)

and the function f3(z) is odd, f3(z) = −f3(−z). We also have

F2(ζ, ϕ) =
1

2i

∫ i∞

−i∞
dν sin(νζ)(cos(νϕ)Q1(ν) + sin(νϕ)iQ2(ν)) =

=
1

2i

∫ i∞

−i∞
dν sin(νζ)eiνϕ(Q1(ν) +Q2(ν)), (39)
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where

Q1(ν) =
cos(νΦ2)

cos(ν[Φ2 − Φ1])
H(ν) +

sin(νΦ1)

sin(ν[Φ1 − Φ2])
h̃(ν),

Q2(ν) =
1

i

(
sin(νΦ2)

cos(ν[Φ2 − Φ1])
H(ν)− cos(νΦ1)

sin(ν[Φ1 − Φ2])
h̃(ν)

)
.

It follows from (39) that

F2(ζ, ϕ) = f2(ζ + ϕ)− f2(−ζ + ϕ),

where

f2(ζ) =
1

4i

∫ i∞

−i∞
eiνζ

1

i
(Q1(ν) +Q2(ν)) dν. (40)

Obviously, it follows from representations (35)–(40) that the functions f1, f2, and f3 are the Fourier trans-

forms along the imaginary axis of some meromorphic functions on the complex ν plane and are meromorphic.

As a result, the asymptotics of H1, H , H3, and h̃ as ν → i∞ are related to the location of singularities

(poles) of the functions f1, f2, and f3. As was noted above, the poles of f1, f2, and f3 can contribute to

the asymptotics. From (33), we have

u1(r, ϕ) =
1

2iπ

∫
γ0

dζ eκr cos ζ(f1(ζ + ϕ)− f1(−ζ + ϕ)), ϕ ∈ [0,Φ1],

u2(r, ϕ) =
1

2iπ

∫
γ0

dζ eκr cos ζ(f2(ζ + ϕ)− f2(−ζ + ϕ)), ϕ ∈ [Φ1,Φ2], (41)

u3(r, ϕ) =
1

2iπ

∫
γ0

dζ eκr cos ζ(f3(ζ + [π − ϕ])− f3(−ζ + [π − ϕ])), ϕ ∈ [Φ2, π].

To describe the singularities of the functions f1, f2, and f3 in (36), (38), and (40), we first find the

corresponding strips on the complex plane, where these meromorphic functions are holomorphic. We first

calculate the higher-order terms of the asymptotics of H1, H , H3, and h̃ as ν → i∞. This can be done

using the asymptotics of h1 and h2, which are solutions of Eq. (11). We recall that these solutions directly

determine H1, H , H3, h̃ by explicit linear relations (9). From these formulas we obtain the ν → i∞
asymptotics in the strip Π(−δ, δ) for some δ > 0:

Hm(ν) = O(eiν[π−τm]),

H1m(ν) = O(eiν[π−τm]),

H3m(ν) = O(eiν[π−τm]),

h̃m(ν) = O(eiν[π−τm]).

Because the meromorphic functions f1, f2, and f3 are related to H1, H , H3, and h̃ by Fourier-type trans-

formations (36), (38), and (40), it follows from Lemma 5.1 that the following assertion holds.

Lemma 6.1. The meromorphic functions f1, f2, and f3 are holomorphic in the respective strips

Π(−[π− τm+Φ1], π− τm+Φ1), Π(−[π− τm+Φ1], π− τm+Φ2), and Π(−[π− τm+π−Φ2], π− τm+π−Φ2)

on the complex ζ plane.

We note that f2 has the following representation in the strip Π(−[π − τm] + Φ1, [π − τm] + Φ2):

f2(ζ) =
1

4i

∫ i∞

−i∞

1

i

(
H(ν)eiν[ζ−Φ2]

cos(ν[Φ2 − Φ1])
+

ih̃(ν)eiν[ζ−Φ1]

sin(ν[Φ1 − Φ2])

)
dν.
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We conclude from Lemma 6.1 that f1(ζ) has poles at the points ζ = ±[π− τm +Φ1] and f3(ζ) has poles at

ζ = ±[π− τm + π−Φ2], which are the singularities closest to the imaginary axis, while f2(ζ) has the same

poles at the points ζ = −[π− τm] +Φ1 and ζ = [π− τm] +Φ2. We recall that in the strips located between

these poles and parallel to the imaginary axis, the functions f1, f2, and f3 are regular (holomorphic).

The other poles are also real.

The further constructions and derivations of Maliuzhinets functional equations in our problem are

completely similar to those proposed in [7]. In particular, the Maliuzhinets equations given in Appendix B

allow continuing the transforms of f1, f2, and f3 from the holomorphy strips into the complex plane and

verifying that their poles are real.

6.3. Poles of the Sommerfeld transforms of f1, f2, and f3 and the asymptotics of integrals.

To calculate the asymptotics of Sommerfeld integrals in (41), according to the well-known procedure,

we deform the integration contour γ0 in Fig. 2 into the steepest descent contour γ±π
0 = {ζ : Re(ζ) = ±π} that

passes through the respective point ±π. In the process of deformation, the poles of the integrands in (41)

are captured. The location of the poles depends on the observation angle ϕ, but they are located outside the

closed strip Π(−π/2, π/2). This means that the captured poles generate exponentially small terms in the

asymptotics as r → ∞. This is so because eκr cos ζ in the integrand in (41) decreases if π/2 < |Re(ζ)| < 3π/2

and all the poles captured inside this strip generate decreasing exponentials. An additional fast decreasing

contribution (of the order O(e−κr/
√
r)) is made by the saddle points at ζ = ±π (see [29]). But for some

observation angles ϕ, some poles ζp(ϕ) of the transforms can be located in a narrow neighborhood of

saddle points and cross them as ϕ varies. This means that the asymptotic estimate of the integral must be

modified. In this case, the asymptotics is expressed in terms of a Fresnel-type integral. The directions ϕ for

which such a collision of a saddle point and a pole occurs are said to be singular. In these directions, the

asymptotically decreasing regime is switched over from one to another. We now consider the corresponding

calculations in more detail.

We consider u1 in (41) (0 � ϕ � Φ1) and rewrite it as

u1(r, ϕ) =
1

2iπ

∫
γ0

dζ eκr cos ζ2f1(ζ + ϕ).

Near the pole at −ϕ+ [π − τm +Φ1], the transform f1 becomes

f1(ζ + ϕ) =
A+

1

ζ + ϕ− [π − τm +Φ1]
+ · · · .

This pole intersects the saddle point π and is captured if ϕ ranges the interval [0,Φ1] and τm < Φ1. This

means that, by the residue theorem, a contribution appears if

π

2
< −ϕ+ [π − τm +Φ1] � π − C

(κr)1/2+ε
, C > 0, κr → ∞.

We have (ϕ+ τm − Φ1 > C/(κr)1/2+ε)

u1(r, ϕ) = 2A+
1 e

−κr cos(ϕ+τm−Φ1) + u∗
1(r, ϕ) + · · · , (42)

where the contribution due to the saddle points ±π has the form

u∗
1(r, ϕ) = 2[f1(−π + ϕ)− f1(π + ϕ)]

e−κr

√
2πκr

(
1 +O

(
1

κr

))
.
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We note that this pole is not close to π, i.e., ϕ is outside the domain

|ϕ+ τm − Φ1| � O

(
1

(κr)1/2+ε

)
, (43)

which describes a neighborhood of the singular direction ϕ = Φ1−τm, for a small ε > 0 and for τm ∈ (0,Φ1).

But if π/2 > τm > Φ1, then the corresponding pole does not cross the saddle point π and there is no singular

direction related to this pole. The dots in (42) mean that there can be a contribution from other poles

that can be captured in the process deforming γ0 into the saddle point contours γ±π
0 . Obviously, the set of

captured poles also depends on Φ1, Φ2. The transform f1 can thus be represented as

f1(ζ + ϕ) =
A−

1

ζ + ϕ+ [π − τm +Φ1]
+ · · ·

in a neighborhood of the pole ζ = −ϕ− [π − τm +Φ1]. This pole contributes to the asymptotics if

−π

2
> −ϕ− [π − τm +Φ1] � −π +

C

(κr)1/2+ε
, C > 0, κr → ∞,

or ϕ− τm +Φ1 � −C/(κr)1/2+ε. This inequality holds for τm > Φ1 and for some ϕ ∈ (0,Φ1). We have

u1(r, ϕ) = 2H(ϕ+ τm − Φ1)A
+
1 e

−κr cos(ϕ+τm−Φ1) +

+ 2[f1(−π + ϕ)− f1(π + ϕ)]
e−κr

√
2πκr

(
1 +O

(
1

κr

))
+ · · · (44)

for τm < Φ1 and |ϕ+ τm − Φ1| � O(1/(κr)1/2+ε).

For τm > Φ1, we obtain

u1(r, ϕ) = 2H(−[ϕ− τm +Φ1])A
−
1 e

−κr cos(ϕ−τm+Φ1) +

+ 2[f1(−π + ϕ)− f1(π + ϕ)]
e−κr

√
2πκr

(
1 +O

(
1

κr

))
+ · · · (45)

for |ϕ − τm + Φ1| � O(1/(κr)1/2+ε), H( · ) is the Heaviside function. The dots in asymptotics (44)

and (45) corresponds to the contribution of other possibly captured poles, which decreases faster than

the terms calculated explicitly. The asymptotics in (44) and (45) are not uniform in ϕ. If the inequalities

|ϕ+ τm − Φ1| � O(1/(κr)1/2+ε) for (44) or |ϕ− τm +Φ1| � O(1/(κr)1/2+ε) for (45) are violated, then the

asymptotic expressions must be modified by using Fresnel-type integrals, as was mentioned above.

6.4. Asymptotics near singular directions. For definiteness, we assume that τm < Φ1 and con-

sider a neighborhood of singular directions ϕ = Φ1 − τm, i.e., domain (43). In this case, the pole of f1 at

ζ = ζm(ϕ) := −ϕ+[π−τm+Φ1] can cross the saddle point π when ϕ ranges [0,Φ1] (also see Sec. 4.2 in [7] for

a similar situation). We consider the disk Bπ([κr]
−1/2+ε) centered at ζ = π of a small radius O([κr]−1/2+ε).

The pole ζm(ϕ) lies in this disk, and we see that the representation (|ϕ+ τm −Φ1| � O(1/(κr)1/2+ε) holds

under the assumption that −ϕ+ π − τm +Φ1 > π)

u1(r, ϕ) =
1

iπ

∫
Bπ([κr]−1/2+ε)∩γπ

0

dζ f1(ζ + ϕ)(ζ − ζm(ϕ))
eκr cos ζ

ζ − ζm(ϕ)
−

− 2f1(−π + ϕ)
e−κr

√
2πκr

(
1 +O

(
1

κr

))
+ δu1(r, ϕ),
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where

δu1(r, ϕ) =
1

iπ

∫
γπ
0 \Bπ([κr]−1/2+ε)

dζ eκr cos ζf1(ζ + ϕ),

is the remainder that can easily be estimated. We now estimate the integral along an asymptotically small

part of the contour γπ
0 in the disk Bπ([κr]

−1/2+ε) ∩ γπ
0 . The function D(ζ, ϕ) := f1(ζ + ϕ)(ζ − ζm(ϕ)) is

regular in this disk. In the disk, we use the approximation cos ζ = −1 + [ζ − π]2/2 + · · · and, introducing

a new variable t = i(ζ − π), obtain

1

iπ

∫
Bπ([κr]−1/2+ε)∩γπ

0

dζ D(ζ, ϕ)
eκr cos ζ

ζ − ζm(ϕ)
=

= −D(π, ϕ)e−κr

iπ

∫ ∞

−∞
dt

e−κrt2/2

t− i[ζm(ϕ)− π]
(1 +O([κr]−1/2+ε)),

where we pulled D(ζ, ϕ) outside the integral by setting ζ = π and replacing the integration limits with ±∞,

which gives an exponentially small relative error. In the last integral, the pole in i[ζm(ϕ) − π] is bypassed

by the contour from below. In particular, if Im(i[ζm(ϕ) − π]) � 0, then the integration contour bypasses

the pole from below along a small-radius arc. The obtained integral is expressed in terms of a Fresnel-type

integral in accordance with § 6.3.1 in [29] as

Ψ(z; s) :=

∫ ∞

−∞
dt
e−zt2

t− s
= πie−zs2 [1−F(−is

√
z )],

where

F(ζ) =
2√
π

∫ ζ

0

e−t2 dt.

As a result, in a neighborhood of the singular direction, i.e., if |ϕ+ τm − Φ1| � O(1/(κr)1/2+ε), we obtain

u1(r, ϕ) = −D(π, ϕ)
e−κr

iπ
Ψ

(
κr

2
; i[Φ1 − ϕ− τm]

)
−

− 2f1(−π + ϕ)
e−κr

√
2πκr

(
1 +O

(
1

κr

))
+ δu1(r, ϕ), (46)

where δu1(r, ϕ) is the contribution of other possibly captured poles. In a neighborhood of a singular

direction, the Fresnel-type integral Ψ in (46) plays the role of a transition function that switches the

asymptotic regimes of exponential decrease of the eigenfunction in the domain Ω1. It is worth noting that

the asymptotics in the domains Ω3 and Ω2 can be studied similarly. In Ω3, we then consider the poles

ζ = ±[π − τm + Φ1] and ζ = ±[π − τm + π − Φ2] and calculate the asymptotics; in Ω2, we consider the

“leading” pole at ζ = ±[π−τm+π−Φ2]. The corresponding calculations are very similar to those described

above for the domain Ω1. We obtain the assertion of Lemma 2.1.

In Fig. 1, the singular directions are shown symbolically. In Ω1, the angle ϕ ranges [0,Φ1]. The

number of singular directions is determined by the parameters Φ1, Φ2, and γ1, γ2 via τm. If ϕ varies and

crosses a saddle point, then each pole generates the corresponding singular direction. If ϕ is small and we

consider Ω1, the asymptotics is determined by the contribution of the saddle points ±π (see (44)), where

H(ϕ + τm − Φ1) = 0, whence u1m ∼ e−κr/
√
κr. As ϕ increases, the pole at ζ = ζm(ϕ) approaches the

saddle point π from the right; if |ϕ+τm−Φ1| � O(1/(κr)1/2+ε), i.e., near a singular direction (shown in Ω1,

Fig. 1), then the asymptotics is described by expression (46) with a Fresnel-type integral. The pole crosses

the saddle point π as ϕ increases and is captured inside the contour, which leads to asymptotics (44), where

H(ϕ+ τm−Φ1) = 1, ϕ+ τm−Φ1 � C/(κr)1/2+ε. The captured pole ζ = ζm(ϕ) generates a contribution in
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the form of a decreasing exponential 2A+
1 e

−κr cos(ϕ+τm−Φ1), while the contribution of the saddle points is

of O(e−κr/
√
κr). Lemma 2.1 implies that the solutions um are square-integrable and satisfy estimate (5).

Using the Sommerfeld integral representation, we can also show that um(r, ϕ) = Cm + O(rδ∗ ) as r → 0,

δ∗ > 0, and hence um ∈ H1(ω), which completes the construction of the eigenfunction in our example.

Appendix A: Diagonalization of a matrix Mehler operator M.
Spectral properties of the scalar Mehler operator

The results in the appendix are based on well-known formulas related to the classical Mehler–Fock

transformation, which is underlain by the Mehler formulas of 1881 [27].

By definition, a matrix Mehler operator M has the form

M =

(
M 0

0 aM

)
,

where M is the “scalar” Mehler operator,5

(Mρ)(x) =
1

π

∫ 1

0

dy ρ(y)

x+ y
,

which is bounded and self-adjoint in L2([0, 1]), 0 < a < 1. Obviously, the spectral properties of M are

determined by the properties of its “scalar” components, M = M ⊕ (aM). The operator M is called the

scalar Mehler operator, and its properties are discussed in [28].

Operator M and its resolvent. With the information about the scalar Mehler operatorM available,

we now consider its matrix analog M. We begin with expression (56) (see below). We write

a

π

∫ 1

0

Pq(y)

x+ y
dy =

aPq(x)

cosh(πq)
,

and relate the parameter p in (57) and q in the last equation by the formula

cosh(πq) = a cosh(πp), a =
γ2
γ1

� 1. (47)

Transcendental equation (47) has the solution

q(p) :=
1

π
arcosh(a cosh(πp)),

whose branch is determined as follows. We consider the set of cuts b∗ + im, m = 0,±1,±2, . . . , where

b∗ = [−a∗/π, a∗/π] (a∗ = arcosh(a−1)) on the complex plane p. We introduce a holomorphic function q(p)

defined in (47), which takes the domain outside this periodic system of cuts to the complex plane of the

variable q with a periodic system of cuts along b∗ + im, m = 0,±1,±2, . . . , where b∗ = [−ia∗/π, ia∗/π]
(a∗ = arccos(a)). The map q( · ) has the following properties:

• q(p) = −q(−p);

• q(p+ im) = q(p) + im;

• q(p) = p+ 1
π ln a+O(p−1), p → ∞.

5A similar operator was studied in [27] in different terms. The operator M was considered in connection with the Dixon
integral equation in monograph [30].
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We then find a (generalized) eigenfunction of the operator M

Pp(x) =

(
Pp(x)

Pq(p)(x),

)
, (48)

corresponding to μ(p) = 1/ cosh(πp):

MPp(x) = μ(p)Pp(x). (49)

When the parameter p ranges all nonnegative values, the spectral parameter μ(p) = 1/ cosh(πp) takes

all values on the interval [0, 1]. The essential (absolutely continuous) spectrum σe(M) = [0, 1] of M has

multiplicity 2 because the operator can be represented by the orthogonal sum M ⊕ (aM). Obviously, eigen-

vector (48) can be represented by an orthogonal sum of vectors of the form (0,Pq(p)(x))
T and (Pp(x), 0)

T.

The formula for the resolvent of M follows directly from the results in [28],

u(x) = [M− μI]−1f(x) = − 1

μ
{I+Aμ}f(x), (50)

where

Aμf(x) =
1

π

∫ 1

0

a(x, y;μ)f(y) dy,

a(x, y;μ) =

(
aμ(x, y) 0

0 aμ/a(x, y)

)
,

aμ/a(x, y) = π

∫ ∞

0

Pq(x)Pq(y)

a−1μ cosh(πq)− 1
dq.

Using an estimate from [28], we obtain

‖a(x, y, μ)‖C2→C2 ≤ C
| ln(2/x) ln(2/y)|√

xy
(51)

uniformly in μ assuming that μ ∈ B1, i.e., near the end of the spectrum μ = 1.

The partition of unity Et has the form

Etg(x) = 0, t � 0,

Etg(x) = g(x) +
1

π

∫ 1

0

e(x, y; t)g(y) dy, t ∈ (0, 1],

Etg(x) = g(x), t > 1,

(52)

where

e(x, y; t) =

(
e(x, y; t) 0

0 ea(x, y; t)

)
, (53)

ea(x, y;μ) = e(x, y;μ/a) for μ/a ∈ (0, 1], and ea(x, y;μ) = 0 for μ/a > 1. The kernel e(x, y;μ) has the form

e(x, y;μ) = −
∫ 1

0

dτ

τ

H(τ − μ)√
1− τ2

Pp(τ)(x)Pp(τ)(y), μ ∈ (0, 1),

p(τ) =
1

π
ln

(
1

τ
+

√
1

τ2
− 1

)
, p(τ) ≥ 0, p(τ) → ∞ as τ → 0 + .

(54)
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With the necessary information about the unperturbed operator M available, we use traditional meth-

ods to describe its perturbation by a compact self-adjoint operator V. In our case, a relatively smooth

perturbation V is an integral operator.

Using these results and some additional considerations, it is easy to diagonalize the scalar Mehler

operator M . It is known that M has a simple absolutely continuous spectrum σa(M) = [0, 1] and the

continuous spectrum eigenfunctions have been determined explicitly (see [28]):

Pp(x) :=

√
p tanh(πp)

x
Pip−1/2

(
1

x

)

with the asymptotics (see [31], 8.772(1))

Pp(x) =

√
p tanh(πp)

x

(
Γ(−ip)

Γ(−ip+ 1/2)

[
x

2

]1/2−ip

+

+
Γ(ip)

Γ(ip+ 1/2)

[
x

2

]1/2+ip)(
1√
π
+O(x2)

)
,

x → 0+, p > 0, and Pp(x) = O(1) for p → ∞, 1 � x > 0. The functions Pp(x) are real for p � 0,

in particular, P0(x) > 0. We use the following assertion [28].

Theorem A.1. The modified Mehler–Fock transformation defined by the formulas

F (x) =

∫ ∞

0

Pp(x)F
∗(p) dp, (55)

F ∗(p) =
∫ 1

0

Pp(x)F (x) dx, (56)

is unitary, U : L2(0,∞) → L2(0, 1). The Mehler–Fock transformation diagonalizes the Mehler operator M ,

1

π

∫ 1

0

Pp(y)

x+ y
dy =

Pp(x)

cosh(πp)
. (57)

Appendix B: Maliuzhinets functional equations for f1, f2, and f3

The integral representations for solutions (41) of the eigenfunction problem satisfy the equation

−�u = Eu in Ω and can be substituted in the boundary conditions. In this way, we obtain functional

equations called the Maliuzhinets equations for the Sommerfeld transforms f1, f2, and f3. In particular,

they allow continueing f1, f2, and f3 from the regularity strips described in Lemma 6.1 to the whole complex

plane. Moreover, it turns out that all poles are located on the real axis. From the Neumann condition on

the half-lines ϕ = 0 and ϕ = π, we necessarily obtain

f1(ζ) = −f1(−ζ), f3(ζ) = −f3(−ζ), (58)

which has already been established above. The continuity condition for l1 implies (see for details of calcu-

lations in a similar situation in [7])

f1(ζ +Φ1)− f1(−ζ +Φ1) = f2(ζ +Φ1)− f2(−ζ +Φ1). (59)
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We now consider the second condition on l1,

1

κr

(
∂u1

∂ϕ
− ∂u2

∂ϕ

)∣∣∣∣
ϕ=Φ1

− γ1
κ
u1(r,Φ1) =

=
1

2iπ

∫
γ0

dζ
eκr cos ζ

κr
(f ′

1(ζ +Φ1)− f ′
1(−ζ +Φ1)− [f ′

1(ζ +Φ1)− f ′
1(−ζ +Φ1)]−

− γ1
κ
[f1(ζ +Φ1)− f1(−ζ +Φ1)]) = 0.

Integrating by parts, we obtain

1

2iπ

∫
γ0

dζ eκr cos ζ(sin ζ(f1(ζ +Φ1) + f1(−ζ +Φ1)− [f1(ζ +Φ1) + f1(−ζ +Φ1)])−

− 2Λ[f1(ζ +Φ1)− f1(−ζ +Φ1)]) = 0.

By the theorem on the inversion of the Sommerfeld integral (see [17], Sec. 3.4), Eq. (59) gives

(sin ζ − sin τm)f1(ζ +Φ1)− (− sin ζ − sin τm)f1(−ζ +Φ1) =

= (sin ζ + sin τm)f2(ζ +Φ1)− (− sin ζ + sin τm)f2(−ζ +Φ1). (60)

Similarly, from the boundary condition for l2, we obtain

f2(ζ +Φ2)− f2(−ζ +Φ2) = f3(ζ + π − Φ2)− f3(−ζ + π − Φ2) (61)

and

(sin ζ − a sin τm)f2(ζ +Φ2)− (− sin ζ − a sin τm)f2(−ζ +Φ2) =

= (sin ζ + a sin τm)f3(ζ + π − Φ2)− (− sin ζ + a sin τm)f3(−ζ + π − Φ2). (62)

We recall that a = γ2/γ1, a sin τm =: sin tm. Maliuzhinets functional equations (58)–(62) allow extend-

ing the transforms to the whole complex plane as meromorphic functions. They also allow asserting that all

poles are located on the real axis. This follows from the fact that translations in the arguments in the equa-

tions are directed along the real axis, while the poles of f1, f3 that are closest to the imaginary axis are real

and located symmetrically at the respective points ζ = ±[π− τm+Φ1], ζ = ±[π− τm+π−Φ2]. This is also

true for f2(z) with respect to the line 1
2 (Φ1+Φ2)+iR for the poles at ζ = −[π−τm]+Φ1 and ζ = [π−τm]+Φ2.

We note that the transforms f1, f2, f3 are bounded at ±i∞ + Re(ζ) for fixed Re(ζ).6 Now the problem

for f1, f2, and f3 satisfying Maliuzhinets equations (58)–(62) amounts to finding Λm = sin τm and nontrivial

solutions that are regular in the strips in Lemma 6.1 and bounded at infinity. In the correct interpretation,

this problem is equivalent to the spectral problem for FD equations (11). If we have appropriate non-

trivial solutions, then we can reconstruct eigenfunctions by using Sommerfeld integrals (41). But we have

already verified the existence of Λ = sin τm and the corresponding H1m, Hm, H3m, and h̃m determining

the transforms f1, f2, and f3 in (36), (38), and (40) given by meromorphic functions with real poles.

Conflicts of interest. The author declares no conflicts of interest.

6Boundedness is ensured by a proper behavior of u as r → 0.
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