Wilson loop invariants from WN conformal blocks

Oleg Alekseev, Fábio Novaes

    Результат исследований: Научные публикации в периодических изданияхстатья

    1 цитирование (Scopus)

    Выдержка

    Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern-Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N), which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.

    Язык оригиналаанглийский
    Страницы (с-по)461-479
    Число страниц19
    ЖурналNuclear Physics B
    Том901
    DOI
    СостояниеОпубликовано - 1 дек 2015

    Отпечаток

    matrices
    polynomials
    algebra
    operators

    Предметные области Scopus

    • Ядерная физика и физика высоких энергий

    Цитировать

    Alekseev, Oleg ; Novaes, Fábio. / Wilson loop invariants from WN conformal blocks. В: Nuclear Physics B. 2015 ; Том 901. стр. 461-479.
    @article{57860303eeba4f1593f5021c3b6f8337,
    title = "Wilson loop invariants from WN conformal blocks",
    abstract = "Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern-Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N), which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.",
    author = "Oleg Alekseev and F{\'a}bio Novaes",
    year = "2015",
    month = "12",
    day = "1",
    doi = "10.1016/j.nuclphysb.2015.11.002",
    language = "English",
    volume = "901",
    pages = "461--479",
    journal = "Nuclear Physics B",
    issn = "0550-3213",
    publisher = "Elsevier",

    }

    Wilson loop invariants from WN conformal blocks. / Alekseev, Oleg; Novaes, Fábio.

    В: Nuclear Physics B, Том 901, 01.12.2015, стр. 461-479.

    Результат исследований: Научные публикации в периодических изданияхстатья

    TY - JOUR

    T1 - Wilson loop invariants from WN conformal blocks

    AU - Alekseev, Oleg

    AU - Novaes, Fábio

    PY - 2015/12/1

    Y1 - 2015/12/1

    N2 - Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern-Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N), which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.

    AB - Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern-Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N), which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.

    UR - http://www.scopus.com/inward/record.url?scp=84946593825&partnerID=8YFLogxK

    U2 - 10.1016/j.nuclphysb.2015.11.002

    DO - 10.1016/j.nuclphysb.2015.11.002

    M3 - Article

    AN - SCOPUS:84946593825

    VL - 901

    SP - 461

    EP - 479

    JO - Nuclear Physics B

    JF - Nuclear Physics B

    SN - 0550-3213

    ER -