Unbiased estimates for gradients of stochastic network performance measures

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

7 Цитирования (Scopus)

Аннотация

Three classes of stochastic networks and their performance measures are considered. These performance measures are defined as the expected value of some random variables and cannot normally be obtained analytically as functions of network parameters in a closed form. We give similar representations for the random variables to provide a useful way of analytical study of these functions and their gradients. The representations are used to obtain sufficient conditions for the gradient estimates to be unbiased. The conditions are rather general and usually met in simulation study of the stochastic networks. Applications of the results are discussed and some practical algorithms of calculating unbiased estimates of the gradients are also presented.
Язык оригиналаанглийский
Страницы (с-по)21-43
ЖурналActa Applicandae Mathematicae
Том33
Номер выпуска1
DOI
СостояниеОпубликовано - окт 1993

Предметные области Scopus

  • Моделирование и симуляция
  • Теория вероятности и статистика

Fingerprint Подробные сведения о темах исследования «Unbiased estimates for gradients of stochastic network performance measures». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать