Two-Loop Calculation of the Anomalous Exponents in the Kazantsev--Kraichnan Model of Magnetic Hydrodynamics

Результат исследований: Научные публикации в периодических изданияхстатья

28 Цитирования (Scopus)

Аннотация

The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework of the kinematic approximation, in the presence of a large-scale background magnetic field. Field theoretic renormalization group methods are applied to the Kazantsev-Kraichnan model of a passive vector advected by the Gaussian velocity field with zero mean and correlation function $\propto \delta(t-t')/k^{d+\epsilon}$. Inertial-range anomalous scaling for the tensor pair correlators is established as a consequence of the existence in the corresponding operator product expansions of certain "dangerous" composite operators, whose negative critical dimensions determine the anomalous exponents. The main technical result is the calculation of the anomalous exponents in the order $\epsilon^2$ of the $\epsilon$ expansion (two-loop approximation).
Язык оригиналаанглийский
Страницы (с-по)128-135
ЖурналLecture Notes in Computer Science
Том7125
DOI
СостояниеОпубликовано - 2012

Fingerprint Подробные сведения о темах исследования «Two-Loop Calculation of the Anomalous Exponents in the Kazantsev--Kraichnan Model of Magnetic Hydrodynamics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать