Tropical optimization problems. Solution techniques and application examples

Результат исследований: Материалы конференцийтезисы

15 Downloads (Pure)

Выдержка

We consider unconstrained and constrained problems formulated in the
framework of tropical algebra to minimize nonlinear functions defined on vectors
over an idempotent semifield. We give a brief overview of known problems and
existing solution methods. Applications in project scheduling, location analysis
and decision making are discussed.
Язык оригиналаанглийский
Страницы8
СостояниеОпубликовано - 2016
Событие6th INFORMS Optimization Society Conference: Optimization and Learning: New Problems, New Challenges - Princeton University, Department of Operations Research and Financial Engineering, Princeton, NJ, Соединенные Штаты Америки
Продолжительность: 17 мар 201619 мар 2016
Номер конференции: 6
https://orfe.princeton.edu/conferences/ios2016/

Конференция

Конференция6th INFORMS Optimization Society Conference
Сокращенный заголовокIOS 2016
СтранаСоединенные Штаты Америки
ГородPrinceton, NJ
Период17/03/1619/03/16
Адрес в сети Интернет

Отпечаток

Optimization Problem
Semifield
Project Scheduling
Nonlinear Function
Idempotent
Decision Making
Minimise
Algebra
Decision making
Project scheduling
Location decision
Optimization problem

Предметные области Scopus

  • Теория оптимизации
  • Теория управления и исследование операций

Цитировать

Кривулин, Н. К. (2016). Tropical optimization problems. Solution techniques and application examples. 8. Выдержка из 6th INFORMS Optimization Society Conference, Princeton, NJ, Соединенные Штаты Америки.
Кривулин, Николай Кимович. / Tropical optimization problems. Solution techniques and application examples. Выдержка из 6th INFORMS Optimization Society Conference, Princeton, NJ, Соединенные Штаты Америки.
@conference{223bb5ecd49a448d8f7f4d26bc568911,
title = "Tropical optimization problems. Solution techniques and application examples",
abstract = "We consider unconstrained and constrained problems formulated in theframework of tropical algebra to minimize nonlinear functions defined on vectorsover an idempotent semifield. We give a brief overview of known problems andexisting solution methods. Applications in project scheduling, location analysisand decision making are discussed.",
author = "Кривулин, {Николай Кимович}",
year = "2016",
language = "English",
pages = "8",
note = "6th INFORMS Optimization Society Conference : Optimization and Learning: New Problems, New Challenges , IOS 2016 ; Conference date: 17-03-2016 Through 19-03-2016",
url = "https://orfe.princeton.edu/conferences/ios2016/",

}

Кривулин, НК 2016, 'Tropical optimization problems. Solution techniques and application examples', Princeton, NJ, Соединенные Штаты Америки, 17/03/16 - 19/03/16, стр. 8.

Tropical optimization problems. Solution techniques and application examples. / Кривулин, Николай Кимович.

2016. 8 Выдержка из 6th INFORMS Optimization Society Conference, Princeton, NJ, Соединенные Штаты Америки.

Результат исследований: Материалы конференцийтезисы

TY - CONF

T1 - Tropical optimization problems. Solution techniques and application examples

AU - Кривулин, Николай Кимович

PY - 2016

Y1 - 2016

N2 - We consider unconstrained and constrained problems formulated in theframework of tropical algebra to minimize nonlinear functions defined on vectorsover an idempotent semifield. We give a brief overview of known problems andexisting solution methods. Applications in project scheduling, location analysisand decision making are discussed.

AB - We consider unconstrained and constrained problems formulated in theframework of tropical algebra to minimize nonlinear functions defined on vectorsover an idempotent semifield. We give a brief overview of known problems andexisting solution methods. Applications in project scheduling, location analysisand decision making are discussed.

M3 - Abstract

SP - 8

ER -

Кривулин НК. Tropical optimization problems. Solution techniques and application examples. 2016. Выдержка из 6th INFORMS Optimization Society Conference, Princeton, NJ, Соединенные Штаты Америки.