To the question of stability of periodic points of three-dimensional diffeomorphisms

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)


Self-diffeomorphisms of three-dimensional space with a hyperbolic fixed point at the origin and a nontransversal point homoclinic to it are considered. It is assumed that the Jacobian matrix of the initial diffeomorphism has complex eigenvalues at the origin. It is shown that, under certain conditions imposed mainly on the character of tangency of the stable and unstable manifolds, a neighborhood of the nontransversal homoclinic point contains an infinite set of stable periodic points whose characteristic exponents are bounded away from zero.
Язык оригиналаанглийский
Страницы (с-по)111-116
Число страниц6
ЖурналVestnik St. Petersburg University: Mathematics
Номер выпуска2
СостояниеОпубликовано - 1 апр 2017

Предметные области Scopus

  • Математика (все)

Ключевые слова

  • nontransversal homoclinic points
  • stable periodic solutions
  • periodic systems

Fingerprint Подробные сведения о темах исследования «To the question of stability of periodic points of three-dimensional diffeomorphisms». Вместе они формируют уникальный семантический отпечаток (fingerprint).