The perturbation method in the problem on a nearly circular inclusion in an elastic body

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

5 Цитирования (Scopus)

Аннотация

The two-dimensional boundary value problem on a nearly circular inclusion in an infinity elastic solid is solved. It is supposed that the uniform stress state takes place at infinity. Contact of the inclusion with the matrix satisfies to the ideal conditions of cohesion. To solve this problem, Muskhelishvili’s method of complex potentials is used. Following the boundary perturbation method, this potentials are sought in terms of power series in a small parameter. In each-order approximation, the problem is reduced to the solving two independent Riemann – Hilbert’s boundary problems. It is constructed an algorithm for funding any-order approximation in terms of elementary functions. Based on the first-order approximation numerical results for hoop stresses at the interface are presented under uniaxial tension at infinity.
Язык оригиналаанглийский
Название основной публикацииThe perturbation method in the problem on a nearly circular inclusion in an elastic body
ИздательInternational Center for Numerical Methods in Engineering
Страницы963-971
ISBN (печатное издание)978-84-946909-2-1
СостояниеОпубликовано - 2017

Fingerprint

Подробные сведения о темах исследования «The perturbation method in the problem on a nearly circular inclusion in an elastic body». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать