The Discrete Spectrum of an Infinite Kirchhoff Plate in the Form of a Locally Perturbed Strip

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We study the discrete spectra of boundary value problems for the biharmonic operator describing oscillations of a Kirchhoff plate in the form of a locally perturbed strip with rigidly clamped or simply supported edges. The two methods are applied: variational and asymptotic. The first method shows that for a narrowing plate the discrete spectrum is empty in both cases, whereas for a widening plate at least one eigenvalue appears below the continuous spectrum cutoff for rigidly clamped edges. The presence of the discrete spectrum remains an open question for simply supported edges. The asymptotic method works only for small variations of the boundary. While for a small smooth perturbation the construction of asymptotics is generally the same for both types of boundary conditions, the asymptotic formulas for eigenvalues can differ substantially even in the main correction term for a perturbation with corner points.

Язык оригиналаанглийский
Страницы (с-по)233-247
Число страниц15
ЖурналSiberian Mathematical Journal
Том61
Номер выпуска2
DOI
СостояниеОпубликовано - 1 мар 2020

Предметные области Scopus

  • Математика (все)

Fingerprint Подробные сведения о темах исследования «The Discrete Spectrum of an Infinite Kirchhoff Plate in the Form of a Locally Perturbed Strip». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать