The approach to optimization of finite-difference schemes for the advective stage of finite-difference-based lattice Boltzmann method

Gerasim V. Krivovichev, Elena S. Marnopolskaya

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

The approach to optimization of finite-difference (FD) schemes for the linear advection equation (LAE) is proposed. The FD schemes dependent on the scalar dimensionless parameter are considered. The parameter is included in the expression, which approximates the term with spatial derivatives. The approach is based on the considering of the dispersive and dissipative characteristics of the schemes as the functions of the parameter. For the proper choice of the parameter, these functions are minimized. The approach is applied to the optimization of two-step schemes with an asymmetric approximation of time derivative and with various approximations of the spatial term. The cases of schemes from first to fourth approximation orders are considered. The optimal values of the parameter are obtained. Schemes with the optimal values are applied to the solution of test problems with smooth and discontinuous initial conditions. Also, schemes are used in the FD-based lattice Boltzmann method (LBM) for modeling of the compressible gas flow. The obtained numerical results demonstrate the convergence of the schemes and decaying of the numerical dispersion.

Язык оригиналаанглийский
Номер статьи2050002
ЖурналInternational Journal of Modeling, Simulation, and Scientific Computing
Том11
Номер выпуска1
DOI
СостояниеОпубликовано - 1 фев 2020

Предметные области Scopus

  • Моделирование и симуляция
  • Прикладные компьютерные науки

Fingerprint Подробные сведения о темах исследования «The approach to optimization of finite-difference schemes for the advective stage of finite-difference-based lattice Boltzmann method». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать