The 0D quantum field theory: Multiple integrals via background field formalism

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Выдержка

A variant of ``0D quantum field theory'' alternative of random matrices is proposed. The Feynman's path integrals are directly replaced by usual multiple Riemannian ones over finite-dimensional real Euclidean space. In this scheme we realized L. D. Faddeev's version of background field formalism. As an example the $\varphi^4$ model is discussed. Necessary Feynman diagram technics is constructed. If diagrams in each order of the perturbation theory (or the loop expansion) are calculated, so, we have an asymptotic series for S-matrix generating functional. We suppose that the method will help calculate asymptotic expansions for special kind of integrals.
Язык оригиналаанглийский
Название основной публикацииProceedings of the International Conference Days on Diffraction 2016
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы41--45
ISBN (печатное издание)978-1-5090-5800-6
DOI
СостояниеОпубликовано - 2016

Цитировать

Bagaev, A. A., & Pis'mak, Y. M. (2016). The 0D quantum field theory: Multiple integrals via background field formalism. В Proceedings of the International Conference Days on Diffraction 2016 (стр. 41--45). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/DD.2016.7756810
Bagaev, Aleksei A. ; Pis'mak, Yuri M. / The 0D quantum field theory: Multiple integrals via background field formalism. Proceedings of the International Conference Days on Diffraction 2016. Institute of Electrical and Electronics Engineers Inc., 2016. стр. 41--45
@inproceedings{6d1a75b2ceee4330acc500d6d9400111,
title = "The 0D quantum field theory: Multiple integrals via background field formalism",
abstract = "A variant of ``0D quantum field theory'' alternative of random matrices is proposed. The Feynman's path integrals are directly replaced by usual multiple Riemannian ones over finite-dimensional real Euclidean space. In this scheme we realized L. D. Faddeev's version of background field formalism. As an example the $\varphi^4$ model is discussed. Necessary Feynman diagram technics is constructed. If diagrams in each order of the perturbation theory (or the loop expansion) are calculated, so, we have an asymptotic series for S-matrix generating functional. We suppose that the method will help calculate asymptotic expansions for special kind of integrals.",
keywords = "background field formalism, $\phi^4$ model, diagram technics, asymptotic series",
author = "Bagaev, {Aleksei A.} and Pis'mak, {Yuri M.}",
year = "2016",
doi = "10.1109/DD.2016.7756810",
language = "English",
isbn = "978-1-5090-5800-6",
pages = "41----45",
booktitle = "Proceedings of the International Conference Days on Diffraction 2016",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
address = "United States",

}

Bagaev, AA & Pis'mak, YM 2016, The 0D quantum field theory: Multiple integrals via background field formalism. в Proceedings of the International Conference Days on Diffraction 2016. Institute of Electrical and Electronics Engineers Inc., стр. 41--45. https://doi.org/10.1109/DD.2016.7756810

The 0D quantum field theory: Multiple integrals via background field formalism. / Bagaev, Aleksei A.; Pis'mak, Yuri M.

Proceedings of the International Conference Days on Diffraction 2016. Institute of Electrical and Electronics Engineers Inc., 2016. стр. 41--45.

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

TY - GEN

T1 - The 0D quantum field theory: Multiple integrals via background field formalism

AU - Bagaev, Aleksei A.

AU - Pis'mak, Yuri M.

PY - 2016

Y1 - 2016

N2 - A variant of ``0D quantum field theory'' alternative of random matrices is proposed. The Feynman's path integrals are directly replaced by usual multiple Riemannian ones over finite-dimensional real Euclidean space. In this scheme we realized L. D. Faddeev's version of background field formalism. As an example the $\varphi^4$ model is discussed. Necessary Feynman diagram technics is constructed. If diagrams in each order of the perturbation theory (or the loop expansion) are calculated, so, we have an asymptotic series for S-matrix generating functional. We suppose that the method will help calculate asymptotic expansions for special kind of integrals.

AB - A variant of ``0D quantum field theory'' alternative of random matrices is proposed. The Feynman's path integrals are directly replaced by usual multiple Riemannian ones over finite-dimensional real Euclidean space. In this scheme we realized L. D. Faddeev's version of background field formalism. As an example the $\varphi^4$ model is discussed. Necessary Feynman diagram technics is constructed. If diagrams in each order of the perturbation theory (or the loop expansion) are calculated, so, we have an asymptotic series for S-matrix generating functional. We suppose that the method will help calculate asymptotic expansions for special kind of integrals.

KW - background field formalism

KW - $\phi^4$ model

KW - diagram technics

KW - asymptotic series

U2 - 10.1109/DD.2016.7756810

DO - 10.1109/DD.2016.7756810

M3 - Conference contribution

SN - 978-1-5090-5800-6

SP - 41

EP - 45

BT - Proceedings of the International Conference Days on Diffraction 2016

PB - Institute of Electrical and Electronics Engineers Inc.

ER -

Bagaev AA, Pis'mak YM. The 0D quantum field theory: Multiple integrals via background field formalism. В Proceedings of the International Conference Days on Diffraction 2016. Institute of Electrical and Electronics Engineers Inc. 2016. стр. 41--45 https://doi.org/10.1109/DD.2016.7756810