The 0D quantum field theory: Multiple integrals via background field formalism

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Выдержка

A variant of ``0D quantum field theory'' alternative of random matrices is proposed. The Feynman's path integrals are directly replaced by usual multiple Riemannian ones over finite-dimensional real Euclidean space. In this scheme we realized L. D. Faddeev's version of background field formalism. As an example the $\varphi^4$ model is discussed. Necessary Feynman diagram technics is constructed. If diagrams in each order of the perturbation theory (or the loop expansion) are calculated, so, we have an asymptotic series for S-matrix generating functional. We suppose that the method will help calculate asymptotic expansions for special kind of integrals.
Языканглийский
Название основной публикацииProceedings of the International Conference Days on Diffraction 2016
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы41--45
ISBN (печатное издание)978-1-5090-5800-6
DOI
СостояниеОпубликовано - 2016

Ключевые слова

    Цитировать

    Bagaev, A. A., & Pis'mak, Y. M. (2016). The 0D quantum field theory: Multiple integrals via background field formalism. В Proceedings of the International Conference Days on Diffraction 2016 (стр. 41--45). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/DD.2016.7756810
    Bagaev, Aleksei A. ; Pis'mak, Yuri M. / The 0D quantum field theory: Multiple integrals via background field formalism. Proceedings of the International Conference Days on Diffraction 2016. Institute of Electrical and Electronics Engineers Inc., 2016. стр. 41--45
    @inproceedings{6d1a75b2ceee4330acc500d6d9400111,
    title = "The 0D quantum field theory: Multiple integrals via background field formalism",
    abstract = "A variant of ``0D quantum field theory'' alternative of random matrices is proposed. The Feynman's path integrals are directly replaced by usual multiple Riemannian ones over finite-dimensional real Euclidean space. In this scheme we realized L. D. Faddeev's version of background field formalism. As an example the $\varphi^4$ model is discussed. Necessary Feynman diagram technics is constructed. If diagrams in each order of the perturbation theory (or the loop expansion) are calculated, so, we have an asymptotic series for S-matrix generating functional. We suppose that the method will help calculate asymptotic expansions for special kind of integrals.",
    keywords = "background field formalism, $\phi^4$ model, diagram technics, asymptotic series",
    author = "Bagaev, {Aleksei A.} and Pis'mak, {Yuri M.}",
    year = "2016",
    doi = "10.1109/DD.2016.7756810",
    language = "English",
    isbn = "978-1-5090-5800-6",
    pages = "41----45",
    booktitle = "Proceedings of the International Conference Days on Diffraction 2016",
    publisher = "Institute of Electrical and Electronics Engineers Inc.",
    address = "United States",

    }

    Bagaev, AA & Pis'mak, YM 2016, The 0D quantum field theory: Multiple integrals via background field formalism. в Proceedings of the International Conference Days on Diffraction 2016. Institute of Electrical and Electronics Engineers Inc., стр. 41--45. https://doi.org/10.1109/DD.2016.7756810

    The 0D quantum field theory: Multiple integrals via background field formalism. / Bagaev, Aleksei A.; Pis'mak, Yuri M.

    Proceedings of the International Conference Days on Diffraction 2016. Institute of Electrical and Electronics Engineers Inc., 2016. стр. 41--45.

    Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

    TY - GEN

    T1 - The 0D quantum field theory: Multiple integrals via background field formalism

    AU - Bagaev, Aleksei A.

    AU - Pis'mak, Yuri M.

    PY - 2016

    Y1 - 2016

    N2 - A variant of ``0D quantum field theory'' alternative of random matrices is proposed. The Feynman's path integrals are directly replaced by usual multiple Riemannian ones over finite-dimensional real Euclidean space. In this scheme we realized L. D. Faddeev's version of background field formalism. As an example the $\varphi^4$ model is discussed. Necessary Feynman diagram technics is constructed. If diagrams in each order of the perturbation theory (or the loop expansion) are calculated, so, we have an asymptotic series for S-matrix generating functional. We suppose that the method will help calculate asymptotic expansions for special kind of integrals.

    AB - A variant of ``0D quantum field theory'' alternative of random matrices is proposed. The Feynman's path integrals are directly replaced by usual multiple Riemannian ones over finite-dimensional real Euclidean space. In this scheme we realized L. D. Faddeev's version of background field formalism. As an example the $\varphi^4$ model is discussed. Necessary Feynman diagram technics is constructed. If diagrams in each order of the perturbation theory (or the loop expansion) are calculated, so, we have an asymptotic series for S-matrix generating functional. We suppose that the method will help calculate asymptotic expansions for special kind of integrals.

    KW - background field formalism

    KW - $\phi^4$ model

    KW - diagram technics

    KW - asymptotic series

    U2 - 10.1109/DD.2016.7756810

    DO - 10.1109/DD.2016.7756810

    M3 - Conference contribution

    SN - 978-1-5090-5800-6

    SP - 41

    EP - 45

    BT - Proceedings of the International Conference Days on Diffraction 2016

    PB - Institute of Electrical and Electronics Engineers Inc.

    ER -

    Bagaev AA, Pis'mak YM. The 0D quantum field theory: Multiple integrals via background field formalism. В Proceedings of the International Conference Days on Diffraction 2016. Institute of Electrical and Electronics Engineers Inc. 2016. стр. 41--45 https://doi.org/10.1109/DD.2016.7756810