Tensor methodology and computational geometry in direct computational experiments in fluid mechanics

Alexander Degtyarev, Vasily Khramushin, Julia Shichkina

Результат исследований: Научные публикации в периодических изданияхстатья

2 Цитирования (Scopus)

Аннотация

The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite – element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate system
Язык оригиналаанглийский
Страницы (с-по)4p
ЖурналAIP Conference Proceedings
Том1863
Номер выпуска110006
DOI
СостояниеОпубликовано - 2017

Fingerprint Подробные сведения о темах исследования «Tensor methodology and computational geometry in direct computational experiments in fluid mechanics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать