Strange attractors and classical stability theory: Stability, instability, lyapunov exponents and chaos

Nikolay Kuznetsov, Gennady Leonov

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделнаучнаярецензирование

2 Цитирования (Scopus)

Выдержка

Consider the dynamical systems generated by the differential equations dx/dt = f(x), t ∈ ℝ1, x ∈ ℝn and by the difference equations x(t + 1) = f(x(t)), t ∈ ℤ, x ∈ ℝn Here, ℝn is a Euclidean space, ℤ is the set of integers, and f (x) is a vector-function: ℝn → ℝn.

Язык оригиналаанглийский
Название основной публикацииHandbook of Applications of Chaos Theory
ИздательTaylor & Francis
Страницы105-134
Число страниц30
ISBN (электронное издание)9781466590441
ISBN (печатное издание)9781466590434
DOI
СостояниеОпубликовано - 1 янв 2017

Отпечаток

Strange attractor
Stability Theory
Lyapunov Exponent
Difference equation
Euclidean space
Chaos
Dynamical system
Differential equation
Integer

Предметные области Scopus

  • Математика (все)

Цитировать

Kuznetsov, N., & Leonov, G. (2017). Strange attractors and classical stability theory: Stability, instability, lyapunov exponents and chaos. В Handbook of Applications of Chaos Theory (стр. 105-134). Taylor & Francis. https://doi.org/10.1201/b20232
Kuznetsov, Nikolay ; Leonov, Gennady. / Strange attractors and classical stability theory : Stability, instability, lyapunov exponents and chaos. Handbook of Applications of Chaos Theory. Taylor & Francis, 2017. стр. 105-134
@inbook{606c7e232a504f7090d01efe290edecc,
title = "Strange attractors and classical stability theory: Stability, instability, lyapunov exponents and chaos",
abstract = "Consider the dynamical systems generated by the differential equations dx/dt = f(x), t ∈ ℝ1, x ∈ ℝn and by the difference equations x(t + 1) = f(x(t)), t ∈ ℤ, x ∈ ℝn Here, ℝn is a Euclidean space, ℤ is the set of integers, and f (x) is a vector-function: ℝn → ℝn.",
author = "Nikolay Kuznetsov and Gennady Leonov",
year = "2017",
month = "1",
day = "1",
doi = "10.1201/b20232",
language = "English",
isbn = "9781466590434",
pages = "105--134",
booktitle = "Handbook of Applications of Chaos Theory",
publisher = "Taylor & Francis",
address = "United Kingdom",

}

Kuznetsov, N & Leonov, G 2017, Strange attractors and classical stability theory: Stability, instability, lyapunov exponents and chaos. в Handbook of Applications of Chaos Theory. Taylor & Francis, стр. 105-134. https://doi.org/10.1201/b20232

Strange attractors and classical stability theory : Stability, instability, lyapunov exponents and chaos. / Kuznetsov, Nikolay; Leonov, Gennady.

Handbook of Applications of Chaos Theory. Taylor & Francis, 2017. стр. 105-134.

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделнаучнаярецензирование

TY - CHAP

T1 - Strange attractors and classical stability theory

T2 - Stability, instability, lyapunov exponents and chaos

AU - Kuznetsov, Nikolay

AU - Leonov, Gennady

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Consider the dynamical systems generated by the differential equations dx/dt = f(x), t ∈ ℝ1, x ∈ ℝn and by the difference equations x(t + 1) = f(x(t)), t ∈ ℤ, x ∈ ℝn Here, ℝn is a Euclidean space, ℤ is the set of integers, and f (x) is a vector-function: ℝn → ℝn.

AB - Consider the dynamical systems generated by the differential equations dx/dt = f(x), t ∈ ℝ1, x ∈ ℝn and by the difference equations x(t + 1) = f(x(t)), t ∈ ℤ, x ∈ ℝn Here, ℝn is a Euclidean space, ℤ is the set of integers, and f (x) is a vector-function: ℝn → ℝn.

UR - http://www.scopus.com/inward/record.url?scp=85033564568&partnerID=8YFLogxK

U2 - 10.1201/b20232

DO - 10.1201/b20232

M3 - Chapter

AN - SCOPUS:85033564568

SN - 9781466590434

SP - 105

EP - 134

BT - Handbook of Applications of Chaos Theory

PB - Taylor & Francis

ER -

Kuznetsov N, Leonov G. Strange attractors and classical stability theory: Stability, instability, lyapunov exponents and chaos. В Handbook of Applications of Chaos Theory. Taylor & Francis. 2017. стр. 105-134 https://doi.org/10.1201/b20232