Stability of Periodic Points of Diffeomorphisms of Multidimensional Space

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)

Аннотация

This paper continues previous works of the author, where diffeomorphisms are studied such that their Jacobi matrices at the origin have only real eigenvalues. In those previous works, we find conditions such that the neighborhood of a nontransversal homoclinic point of the studied diffeomorphism contains an infinite set of stable periodic points with characteristic exponents separated from zero. In the present paper, it is assumed that the Jacobi matrix of the original diffeomorphism at the origin has real eigenvalues and several pairs of complex conjugate eigenvalues. Under this assumption, we find conditions guaranteeing that a neighborhood of a nontransversal homoclinic point contains an infinite set of stable periodic points with characteristic exponents separated from zero.
Язык оригиналаанглийский
Страницы (с-по)204-214
ЖурналVestnik St. Petersburg University: Mathematics
Том51
Номер выпуска3
DOI
СостояниеОпубликовано - 15 сен 2018

Предметные области Scopus

  • Математика (все)

Fingerprint Подробные сведения о темах исследования «Stability of Periodic Points of Diffeomorphisms of Multidimensional Space». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать