Spin structure of spin-orbit split surface states in a magnetic material revealed by spin-integrated photoemission

D. Yu Usachov, M. Güttler, S. Schulz, G. Poelchen, S. Seiro, K. Kliemt, K. Kummer, C. Krellner, C. Laubschat, E. V. Chulkov, D. V. Vyalikh

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

3 Цитирования (Scopus)


The emergence of ferromagnetism in Rashba systems, where the evolving exchange interaction enters into competition with spin-orbit coupling, leads to a nontrivial spin-polarized electronic landscape with an intricate momentum-dependent spin structure, which is challenging to unveil. Here, we show a way to disentangle the contributions from the effective spin-orbit and exchange fields and thus to gain knowledge of the spin structure in ferromagnetic Rashba materials, which is required for spintronic applications. Our approach is based exclusively on spin-integrated photoemission measurements combined with a two-band modeling. As an example, we consider the mixed-valent material EuIr2Si2 which, while being nonmagnetic in the bulk, reveals strong ferromagnetism at the iridium-silicide surface where both spin-orbit and exchange magnetic interactions coexist. The combined effect of these interactions causes a complex band dispersion of the surface state which can be observed in photoemission experiments. Our method allows us to comprehensively unravel the surface-state spin structure driven by spin-orbit coupling at the ferromagnetic surface. This approach opens up opportunities to characterize the spin structure of ferromagnetic Rashba materials, especially where dedicated spin-resolved measurements remain challenging.

Язык оригиналаанглийский
Номер статьи245140
ЖурналPhysical Review B
Номер выпуска24
СостояниеОпубликовано - 15 июн 2020

Предметные области Scopus

  • Электроника, оптика и магнитные материалы
  • Физика конденсатов

Fingerprint Подробные сведения о темах исследования «Spin structure of spin-orbit split surface states in a magnetic material revealed by spin-integrated photoemission». Вместе они формируют уникальный семантический отпечаток (fingerprint).