Smooth diffeomorphisms with countable set of stable periodic points

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)

Аннотация

Smooth diffeomorphisms with countable set of stable periodic points are presented. A neighborhood of a homoclinic point may contain infinitely many stable periodic points, but at least one characteristic exponent of such points tends to zero with increasing the period. By Rolle's theorem, the second derivative of g vanishes at the points. Similarly, it is easy to see that the derivative of any order higher than the second of the function g vanishes at infinitely many points in any neighborhood of zero. Conditions were obtained under which any neighborhood of a homoclinic point of a diffeomorphism contains infinitely many stable periodic points whose characteristic exponents are bounded away from zero.

Язык оригиналаанглийский
Страницы (с-по)441-443
Число страниц3
ЖурналDoklady Mathematics
Том84
Номер выпуска1
DOI
СостояниеОпубликовано - 1 авг 2011

Предметные области Scopus

  • Математика (все)

Fingerprint Подробные сведения о темах исследования «Smooth diffeomorphisms with countable set of stable periodic points». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать