Small deviations of gaussian random fields in lq–spaces

Mikhail Lifshits, Werner Linde, Zhan Shi

Результат исследований: Научные публикации в периодических изданияхстатья

4 Цитирования (Scopus)


We investigate small deviation properties of Gaussian random fields in the space Lq(ℝN, μ) where μ is an arbitrary finite compactly supported Borel measure. Of special interest are hereby “thin” measures μ, i.e., those which are singular with respect to the N–dimensional Lebesgue measure; the so–called self–similar measures providing a class of typical examples. For a large class of random fields (including, among others, fractional Brownian motions), we describe the behavior of small deviation probabilities via numerical characteristics of μ, called mixed entropy, characterizing size and regularity of μ. For the particularly interesting case of self–similar measures μ, the asymptotic behavior of the mixed entropy is evaluated explicitly. As a consequence, we get the asymptotic of the small deviation for N–parameter fractional Brownian motions with respect to Lq(ℝN, μ)– norms. While the upper estimates for the small deviation probabilities are proved by purely probabilistic methods, the lower bounds are established by analytic tools concerning Kolmogorov and entropy numbers of Hölder operators.

Язык оригиналаанглийский
Страницы (с-по)1204-1233
Число страниц30
ЖурналElectronic Journal of Probability
СостояниеОпубликовано - 1 янв 2006

Предметные области Scopus

  • Теория вероятности и статистика
  • Статистика, теория вероятности и теория неопределенности

Fingerprint Подробные сведения о темах исследования «Small deviations of gaussian random fields in l<sub>q</sub>–spaces». Вместе они формируют уникальный семантический отпечаток (fingerprint).