Small deviations for fractional stable processes

Mikhail Lifshits, Thomas Simon

Результат исследований: Научные публикации в периодических изданияхстатья

28 Цитирования (Scopus)

Аннотация

Let {Rt, 0 ≤ t ≤ 1} be a symmetric α-stable Riemann-Liouville process with Hurst parameter H > 0. Consider a translation invariant, β-self-similar, and p-pseudo-additive functional semi-norm ∥·∥. We show that if H > β + 1/p and γ = (H - β - 1/p)-1, then lim ε↓0 εγ log ℙ[∥ R ∥ ≤ ε] = -K ∈ [-∞, 0), with K finite in the Gaussian case α = 2. If α < 2, we prove that K is finite when R is continuous and H > β + 1/p + 1/α. We also show that under the above assumptions, lim ε↓0 εγ log ℙ[∥ X ∥ ≤ ε] = -K ∈ (-∞, 0), where X is the linear & alpha;-stable fractional motion with Hurst parameter H ∈ (0, 1) (if α = 2, then X is the classical fractional Brownian motion). These general results cover many cases previously studied in the literature, and also prove the existence of new small deviation constants, both in Gaussian and non-Gaussian frameworks.

Язык оригиналаанглийский
Страницы (с-по)725-752
Число страниц28
ЖурналAnnales de l'institut Henri Poincare (B) Probability and Statistics
Том41
Номер выпуска4
DOI
СостояниеОпубликовано - 1 июл 2005

Предметные области Scopus

  • Теория вероятности и статистика
  • Статистика, теория вероятности и теория неопределенности

Fingerprint Подробные сведения о темах исследования «Small deviations for fractional stable processes». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать