TY - JOUR
T1 - Site-selective As–P substitution and hydrogen bonding in the crystal structure of philipsburgite, Cu5Zn((As,P)O4)2(OH)6·H2O
AU - Krivovichev, Sergey V.
AU - Zhitova, Elena S.
AU - Ismagilova, Rezeda M.
AU - Zolotarev, Andrey A.
PY - 2018/11/1
Y1 - 2018/11/1
N2 - Philipsburgite, Cu5Zn((As,P)O4)2(OH)6·H2O, from the Middle Pit, Gold Hill Mine, Tooele Co., Utah, USA, was studied by single-crystal X-ray diffraction and scanning electron microscopy. The empirical formula of the studied sample is (Cu4.69Zn1.23)(As0.86P0.18O4)2(OH)5.61·H2O, which agrees well with the previous reports on the mineral. Philipsburgite is monoclinic, P21/c, a = 12.385(6), b = 9.261(4), c = 10.770(5) Å, β = 97.10(1)o, V = 1225.7(9) Å3 (at 100 K), and Z = 4. The crystal structure was refined to R1 = 0.046 for 2563 unique observed reflections with |Fo| ≥ 4σF. The crystal structure of philipsburgite is isotypic to that of kipushite and can be considered as a complex three-dimensional framework consisting of two types of layers stacked parallel to the a-axis. The A-type layer is formed by the edge-sharing Jahn–Teller-distorted Cuφ6 octahedra [φ = O2−, (OH)−, H2O]. Two adjacent octahedral layers are linked via (As2O4) tetrahedra. The B-type layer is built by corner-sharing (ZnO4) and (As1O4) tetrahedra and is formed by the four- and eight-membered tetrahedral rings. The A:B ratio of the A and B layers is equal to 2:1. The hydrogen bonding network in philipsburgite is rather complex and consists of two- and three-center hydrogen bonds. The As1 site accommodates ca. 18% of P and is a preferable position for the P substitution in philipsburgite. The observed selectivity of the As1 site for P may indicate that, for the intermediate compositions with the P:As ratios close to 1:1, there is a fully ordered species with P prevalent at the As1 site and As prevalent at the As2 site. The intermediate composition would, therefore, be Cu5Zn(AsO4)(PO4)(OH)6·H2O and such a mineral can be considered as a separate species, according to the rules of the International Mineralogical Association (IMA). Philipsburgite should be considered as structurally complex with the Shannon information contents of 4.954 bits/atom and 614.320 bits/cell. The obvious reason for the structural complexity of the mineral is its modularity, i.e., the presence of two structurally distinct modules, the octahedral–tetrahedral (A) and tetrahedral (B) layers.
AB - Philipsburgite, Cu5Zn((As,P)O4)2(OH)6·H2O, from the Middle Pit, Gold Hill Mine, Tooele Co., Utah, USA, was studied by single-crystal X-ray diffraction and scanning electron microscopy. The empirical formula of the studied sample is (Cu4.69Zn1.23)(As0.86P0.18O4)2(OH)5.61·H2O, which agrees well with the previous reports on the mineral. Philipsburgite is monoclinic, P21/c, a = 12.385(6), b = 9.261(4), c = 10.770(5) Å, β = 97.10(1)o, V = 1225.7(9) Å3 (at 100 K), and Z = 4. The crystal structure was refined to R1 = 0.046 for 2563 unique observed reflections with |Fo| ≥ 4σF. The crystal structure of philipsburgite is isotypic to that of kipushite and can be considered as a complex three-dimensional framework consisting of two types of layers stacked parallel to the a-axis. The A-type layer is formed by the edge-sharing Jahn–Teller-distorted Cuφ6 octahedra [φ = O2−, (OH)−, H2O]. Two adjacent octahedral layers are linked via (As2O4) tetrahedra. The B-type layer is built by corner-sharing (ZnO4) and (As1O4) tetrahedra and is formed by the four- and eight-membered tetrahedral rings. The A:B ratio of the A and B layers is equal to 2:1. The hydrogen bonding network in philipsburgite is rather complex and consists of two- and three-center hydrogen bonds. The As1 site accommodates ca. 18% of P and is a preferable position for the P substitution in philipsburgite. The observed selectivity of the As1 site for P may indicate that, for the intermediate compositions with the P:As ratios close to 1:1, there is a fully ordered species with P prevalent at the As1 site and As prevalent at the As2 site. The intermediate composition would, therefore, be Cu5Zn(AsO4)(PO4)(OH)6·H2O and such a mineral can be considered as a separate species, according to the rules of the International Mineralogical Association (IMA). Philipsburgite should be considered as structurally complex with the Shannon information contents of 4.954 bits/atom and 614.320 bits/cell. The obvious reason for the structural complexity of the mineral is its modularity, i.e., the presence of two structurally distinct modules, the octahedral–tetrahedral (A) and tetrahedral (B) layers.
KW - ARSENATNAYA FUMAROLE
KW - CAVANSITE
KW - COPPER
KW - Copper arsenate
KW - Crystal structure
KW - DEHYDRATION BEHAVIOR
KW - Hydrogen bonding
KW - KAMCHATKA
KW - KIPUSHITE
KW - Kipushite
KW - MACHATSCHKIITE
KW - MINERALS
KW - Philipsburgite
KW - Selective substitution
KW - Structural complexity
KW - TOLBACHIK VOLCANO
KW - VESZELYITE
UR - http://www.scopus.com/inward/record.url?scp=85046752516&partnerID=8YFLogxK
U2 - 10.1007/s00269-018-0972-z
DO - 10.1007/s00269-018-0972-z
M3 - Article
AN - SCOPUS:85046752516
VL - 45
SP - 917
EP - 923
JO - Physics and Chemistry of Minerals
JF - Physics and Chemistry of Minerals
SN - 0342-1791
IS - 10
ER -