Simulation of motion of satellites after fixing the values of their accelerations

Результат исследований: Научные публикации в периодических изданияхстатья в журнале по материалам конференциирецензирование


At the Department of Theoretical and Applied Mechanics of the Faculty of Mathematics and Mechanics of St. Petersburg State University [1] the theory of motion of nonholonomic systems with linear nonholonomic constraints of high order n<2 was created. The high-order constraints are considered as program and ideal ones, and their reaction force is considered as the required control force. A consistent system of differential equations with respect to unknown generalized coordinates and Lagrange multipliers is constructed to solve the problem. The report examines the motion of Soviet satellites of the systems "Cosmos", "Molniya", "Tundra" after fixing the values of their accelerations in apogees. This corresponds to imposing the nonlinear second-order nonholonomic constraints on the further motion of satellites [2, 3]. The equations of constraints are differentiated in time and presented as linear third-order constraints to make it possible to apply the above theory. The motions of satellites are studied in polar coordinates, the origin of this system coinciding with the center of the Earth. It turns out that after fixing the acceleration values in the apogees, the satellites begin to rotate between two concentric circles, alternately touching each of them.

Язык оригиналаанглийский
Номер статьи012137
ЖурналJournal of Physics: Conference Series
Номер выпуска1
СостояниеОпубликовано - 13 дек 2019
Событие8th International Conference on Mathematical Modeling in Physical Science, IC-MSQUARE 2019 - Bratislava, Словакия
Продолжительность: 26 авг 201929 авг 2019

Предметные области Scopus

  • Физика и астрономия (все)

Fingerprint Подробные сведения о темах исследования «Simulation of motion of satellites after fixing the values of their accelerations». Вместе они формируют уникальный семантический отпечаток (fingerprint).