Self-similarity for information flows with a random load free on distribution: The long memory case

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

1 Цитирования (Scopus)

Аннотация

We consider a stochastic model of changing random loads of information flows. The basic random process we exploit is a Double Stochastic Poisson process which manages the change points of the random loads. This Double Stochastic Poisson process is equipped with a Gamma distributed random intensity. The shape parameter of the random intensity equals 2-2H, where 1/2 < H < 1 is the Hurst constant for the corresponding long memory self-similarity. We consider pathwise integral of such kind random load process. Turning to infinity jointly the scale parameter of the random intensity and the variance of the random loads we obtain in a limit a random process with continuous piecewise linear trajectories. Such limit process has the covariance which explicitly coincides with the fractional Brownian motion covariance.

Язык оригиналаанглийский
Название основной публикацииProceedings - 2018 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы183-189
Число страниц7
ISBN (электронное издание)9781728119298
DOI
СостояниеОпубликовано - 2019
Событие2nd European Conference on Electrical Engineering and Computer Science, EECS 2018 - Bern, Швейцария
Продолжительность: 20 дек 201822 дек 2018

Серия публикаций

НазваниеProceedings - 2018 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018

конференция

конференция2nd European Conference on Electrical Engineering and Computer Science, EECS 2018
Страна/TерриторияШвейцария
ГородBern
Период20/12/1822/12/18

Предметные области Scopus

  • Теория вероятности и статистика
  • Экономика, эконометрия, и финансы (разное)

Fingerprint

Подробные сведения о темах исследования «Self-similarity for information flows with a random load free on distribution: The long memory case». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать