Scattering of a flexural wave by a finite straight crack in an elastic plate

I. V. Andronov, B. P. Belinskii

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

6 Цитирования (Scopus)


The diffraction of flexural waves by a short straight crack in an elastic thin plate is considered. The vibrations of the plate are described by the Kirchhoff model. The Fourier method transforms the problem to integral equations of convolution on an interval. The theorems of existence and uniqueness of solutions for these equations are proved. The numerical procedure is based on the orthogonal polynomials decomposition method. It leads to infinite systems of algebraic equations for the coefficients. The truncation method is proved to be applicable to these systems due to the special choice of the polynomials. A physical interpretation of numerical and asymptotic results obtained for the directivity of the scattered wave and for the stress intensity coefficients near the ends of the crack is suggested.

Язык оригиналаанглийский
Страницы (с-по)1-16
Число страниц16
ЖурналJournal of Sound and Vibration
Номер выпуска1
СостояниеОпубликовано - 9 фев 1995

Предметные области Scopus

  • Физика конденсатов
  • Сопротивление материалов
  • Акустика и ультраакустика
  • Общее машиностроение

Fingerprint Подробные сведения о темах исследования «Scattering of a flexural wave by a finite straight crack in an elastic plate». Вместе они формируют уникальный семантический отпечаток (fingerprint).