Resonances of 4th order differential operators

Результат исследований: Научные публикации в периодических изданияхстатья

2 Цитирования (Scopus)

Аннотация

We consider fourth order ordinary differential operator with compactly supported coefficients on the line. We define resonances as zeros of the Fredholm determinant which is analytic on a four sheeted Riemann surface. We determine estimates of the number of resonances in complex discs at large radius. We consider resonances of an Euler-Bernoulli operator on the real line with the positive coefficients which are constants outside some finite interval. We show that the Euler-Bernoulli operator has no eigenvalues and resonances iff the positive coefficients are constants on the whole axis.

Язык оригиналаанглийский
Страницы (с-по)137-177
Число страниц41
ЖурналAsymptotic Analysis
Том111
Номер выпуска3-4
DOI
СостояниеОпубликовано - 1 янв 2019

    Fingerprint

Предметные области Scopus

  • Математика (все)

Цитировать