Standard

Radiation-chemical synthesis and characterization of ferrihydrite from iron (III) nitrate. / Ilves, V.G.; Balezin, M.E.; Sokovnin, S. Yu.; Gerasimov, A.S.; Kalinina, E.G.; Rusakova, D.S.; Korusenko, P.M.; Zuev, M.G.; Uimin, M.A.

в: Radiation Physics and Chemistry, Том 218, 111612, 01.05.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Ilves, VG, Balezin, ME, Sokovnin, SY, Gerasimov, AS, Kalinina, EG, Rusakova, DS, Korusenko, PM, Zuev, MG & Uimin, MA 2024, 'Radiation-chemical synthesis and characterization of ferrihydrite from iron (III) nitrate', Radiation Physics and Chemistry, Том. 218, 111612. https://doi.org/10.1016/j.radphyschem.2024.111612, https://doi.org/10.1016/j.radphyschem.2024.111612

APA

Ilves, V. G., Balezin, M. E., Sokovnin, S. Y., Gerasimov, A. S., Kalinina, E. G., Rusakova, D. S., Korusenko, P. M., Zuev, M. G., & Uimin, M. A. (2024). Radiation-chemical synthesis and characterization of ferrihydrite from iron (III) nitrate. Radiation Physics and Chemistry, 218, [111612]. https://doi.org/10.1016/j.radphyschem.2024.111612, https://doi.org/10.1016/j.radphyschem.2024.111612

Vancouver

Ilves VG, Balezin ME, Sokovnin SY, Gerasimov AS, Kalinina EG, Rusakova DS и пр. Radiation-chemical synthesis and characterization of ferrihydrite from iron (III) nitrate. Radiation Physics and Chemistry. 2024 Май 1;218. 111612. https://doi.org/10.1016/j.radphyschem.2024.111612, https://doi.org/10.1016/j.radphyschem.2024.111612

Author

Ilves, V.G. ; Balezin, M.E. ; Sokovnin, S. Yu. ; Gerasimov, A.S. ; Kalinina, E.G. ; Rusakova, D.S. ; Korusenko, P.M. ; Zuev, M.G. ; Uimin, M.A. / Radiation-chemical synthesis and characterization of ferrihydrite from iron (III) nitrate. в: Radiation Physics and Chemistry. 2024 ; Том 218.

BibTeX

@article{706417a858e34f8e82be26637a053ed2,
title = "Radiation-chemical synthesis and characterization of ferrihydrite from iron (III) nitrate",
abstract = "In this study, 2-line ferrihydrite (2L Fh) nanoparticles (NPles)were synthesized by radiation-chemical method from an alcoholic solution of iron (III) nitrate for the first time. The X-ray diffraction analysis confirmed that the synthetic powder exhibited the characteristic pattern of 2L Fh NPles. DSC-TG analysis conducted in air atmosphere further verified the formation of 2L Fh. SEM analysis showed the presence of mesoporous plate-like structures in the 2L Fh powder, consisting of aggregates of NPs with an average size of approximately 20 nm. The absence of impurity peaks on the X-ray diffractograms and energy dispersion spectra (EDX) confirmed the chemical purity of the produced 2L Fh NPles. Additionally, the XPS method detected the presence of nitrogen and carbon adsorbed to the developed surface of the 2L Fh plates. 2L Fh NPles, when dried in air at a temperature of 50 °C, rapidly dissolved in water. 2L Fh NPles alcohol suspensions were stabilized using surfactants polyethylenimine (PEI) and acetylacetone (AcAs). 2L Fh NPles showed good photocatalytic properties when irradiated with ultraviolet light of methyl violet (MV) dye. These 2L Fh NPles, synthesized using an environmentally friendly radiation-chemical method, have immense potential for applications in biomedicine and photocatalysis. {\textcopyright} 2024 Elsevier Ltd",
keywords = "2L Fh nanoparticles, Radiation-chemical synthesis, Acetone, Iron compounds, Nanoparticles, Nitrates, Photocatalytic activity, Plates (structural components), X ray powder diffraction, 2-line ferrihydrite nanoparticle, Air atmosphere, Alcoholic solutions, Chemical method, DSC-TG analysis, Ferrihydrites, SEM analysis, Synthesis and characterizations, Synthesised, Synthesis (chemical), acetylacetone, alcohol, dye, ferric hydroxide, ferrihydrite nanoparticle, iron derivative, iron nitrate, methyl violet, nanoparticle, nitric acid derivative, nitrogen, polyethyleneimine, unclassified drug, water, Article, atmosphere, biomedicine, chemical analysis, chemical phenomena, chemical purity, chemical structure, controlled study, differential scanning calorimetry, electron beam, energy dispersive X ray spectroscopy, particle size, photocatalysis, powder, radiation chemical synthesis, scanning electron microscopy, synthesis, temperature, thermogravimetry, ultraviolet radiation, X ray diffraction",
author = "V.G. Ilves and M.E. Balezin and Sokovnin, {S. Yu.} and A.S. Gerasimov and E.G. Kalinina and D.S. Rusakova and P.M. Korusenko and M.G. Zuev and M.A. Uimin",
note = "Export Date: 11 March 2024 CODEN: RPCHD Адрес для корреспонденции: Ilves, V.G.; Institute of Electrophysics, Russian Federation; эл. почта: zefaivg@mail.ru Химические вещества/CAS: acetylacetone, 123-54-6; alcohol, 64-17-5; ferric hydroxide, 11113-66-9, 12022-37-6, 12181-28-1, 1309-33-7, 1310-14-1, 1317-60-8, 1317-63-1; nitrogen, 7727-37-9; polyethyleneimine, 74913-72-7; water, 7732-18-5 Сведения о финансировании: Grantov{\'a} Agentura {\v C}esk{\'e} Republiky, GA {\v C}R, 20-58-26002 Сведения о финансировании: Russian Foundation for Basic Research, РФФИ Текст о финансировании 1: The reported study was funded by RFBR and GACR , project number № 20-58-26002 . Пристатейные ссылки: Abedini, A., Daud, A.R., Abdul Hamid, M.A., Kamil Othman, N., Radiolytic formation of Fe3O4 nanoparticles: influence of radiation dose on structure and magnetic properties (2014) PLoS One, 9; Ahmad, K., Ashah, I., Ali, S., Khan, M.T., Qureshi, M.B.A., Shah, S.H.A., Ali, A., Gu, H.N., Synthesis and evaluation of Ca-doped ferrihydrite as a novel adsorbent for the efficient removal of fluoride (2022) Environ. Sci. Pollut. Res. Int., 29, pp. 6375-6388; Arinchtein, A., Schmack, R., Kraffert, K., Radnik, J., Dietrich, P., Sachse, R., Ralph Kraehnert, role of water in phase transformations and crystallization of ferrihydrite and hematite (2020) ACS Appl. Mater. Interfaces, 12, pp. 38714-38722; Balezin, M.E., Sokovnin, S.Y., Production of iron oxide nanopowders by radiation-chemical method (2022) Proceedings of 8th International Congress on Energy Fluxes and Radiation Effects EFRE, pp. 453-457. , Tomsk, Russia; Balezin, M.E., Sokovnin, S.Y., Uimin, M.A., Preparation of iron oxide nanopowders by the radiation-chemical method (2021) J. Phys.: Conf. Ser., 2064; Barro'n, V., Torrent, J., Evidence for a simple pathway to maghemite in Earth and Mars soils (2002) Geochem. Cosmochim. Acta, 66, pp. 2801-2806; Barro'n, V., Torrent, J., de Grave, E., Hydromaghemite, an intermediate in the hydrothermal transformation of 2-line ferrihydrite into hematite (2003) Am. Mineral., 88, pp. 1679-1688; Boily, J.F., Song, X., Direct identification of reaction sites on ferrihydrite (2020) Commun. Chem., 3; Burrows, N.D., Kesselman, E., Sabyrov, K., Stemig, A., Talmonb, Y., Penn, R.L., Crystalline nanoparticle aggregation in non-aqueous solvents (2014) CrystEngComm, 16, pp. 1472-1481; Campbell, A.S., Schwertmann, U., Campbell, P.A., Formation of cubic phases on heating ferrihydrite (1997) Clay Miner., 32, pp. 615-622; Cazacu, N., Chilom, C.G., Iftimie,Mю B{\u a}l{\u a}șoiu, S., Ladygina, V.P., Stolyar, S.V., Orelovich, O.L., Kovalev, Y.S., Rogachev, A.V., Biogenic ferrihydrite nanoparticles produced by Klebsiella oxytoca: characterization, physicochemical properties and bovine serum albumin interactions (2022) Nanomaterials, 12, p. 249; Chappell, H.F., Thom, W., Bowron, D.T., Faria, N., Hasnip, P.J., Powell, J.J., Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling (2017) Phys. Rev. Mater., 1; Chilom, C.G., Gazdaru, D.M., Balasoiu, M., Bacalum, M., Stolyar, S.V., Popescu, A.I., Biomedical application of biogenic ferrihydrite nanoparticles (2017) Rom. J. Phys., 62, p. 701; Chukhov, F.V., Zvyagin, B.B., Gorshkov, A.I., Yermilova, L.P., Balashova, V.V., Ferrihydrite (1974) Int. Geol. Rev., 16, pp. 1131-1143; Chukhrov, F.V., Zvyagin, B.B., Gorshkov, A.I., Yermilova, L.P., Rudnitskaya, E.S., The Towe-Bradley phase—a product of the supergene alteration of ores (1971) Izvestia Akad Nauk SSSR (Geol Ser.), 1, p. 3. , (in Russian); Cornell, R.M., Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (2003), second ed. Wiley-VCH Weinheim, Germany; Cudennec, Y., Lecerf, A., The transformation of ferrihydrite into goethite or hematite, revisited (2006) J. Solid State Chem., 179, pp. 716-722; Das, S., Hendry, M.J., Essilfie-Dughan, J., Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature (2011) Environ. Sci. Technol., 45, pp. 268-275; Descostes, M., Mercier, F., Thromat, N., Beaucaire, C., Gautier-Soyer, M., Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium (2000) Appl. Surf. Sci., 165, pp. 288-302; Duszy{\'n}ska, A., Danielewicz, A., Kad{\l}ubowski, S., Kozanecki, M., Maniukiewicz, W., Sowi{\'n}ski, P., Szadkowska – Nicze, M., Influence of electron-beam irradiation on surface properties of magnetic iron oxide nanoparticles stabilized with citrate (2020) Radiat. Phys. Chem., 169; Engel, M., No{\"e}l, V., Pierce, S., Kovarik, L., Kukkadapu, R.K., Pacheco, J.S.L., Qafoku, O., Bargar, J.R., Structure and composition of natural ferrihydrite nano-colloids in anoxic groundwater (2023) Water Res., 238; Filip, J., Zboril, R., Schneeweiss, O., Zeman, J., Cernik, M., Kvapil, P., Otyepka, M., Environmental applications of chemically pure natural ferrihydrite (2007) Environ. Sci. Technol., 41, pp. 4367-4374; Gong, Y., Su, Y., Zhang, Y., Zhou, X., Biological reduction of ferrihydrite with silica addition: rates and controlling mechanisms (2021) ACS Earth Space Chem., 10, pp. 2778-2791; Gordon, L.M., Rom{\'a}n, J.K., Michael Everly, R., Cohen, M.J., Wilker, J.J., Derk joester, selective formation of metastable ferrihydrite in the Chiton tooth (2014) Angew. Chem., Int. Ed. Engl., 53, pp. 11506-11509; Gracheva, M., Klencs{\'a}r, Z., Kis, V.K., B{\'e}res, K.A., May, Z., Halasy, V., Singh, A., Kov{\'a}cs, K., Iron nanoparticles for plant nutrition: synthesis, transformation, and utilization by the roots of Cucumis sativus (2023) J. Mater. Res., 38, pp. 1035-1047; Gregg, S.J., Sing, K.S.W., Adsorption, Surface Area and Porosity (1982), p. 303. , Academic Press London; Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., McIntyre, N.S., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds (2004) Surf. Interface Anal., 36, pp. 1564-1574; Guyodo, Y., Banerjee, S.K., Lee Penn, R., Burleson, D., Berquo, T.S., Seda, T., Solheid, P., Magnetic properties of synthetic six-line ferrihydrite nanoparticles (2006) Phys. Earth Planet. In., 154, pp. 222-233; Hashimoto, H., Ukita, M., Sakuma, R., Nakanishi, M., Fujii, T., Imanishi, N., Takada, J., Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries (2016) J. Power Sources, 328, pp. 503-509; Hiemstra, T., Mendez, J.C., Li, J., Evolution of the reactive surface area of ferrihydrite: time, pH, and temperature dependency of growth by Ostwald ripening (2019) Environ. Sci.: Nano, 6, pp. 820-833; Huang, Y., Yang, J., Degradation of sulfamethoxazole by the heterogeneous Fenton-like reaction between gallic acid and ferrihydrite. Ecotoxicol. Environ. Saf. DOI: 10.1016/j.ecoenv.2021.112847; Huang, Y., Zhang, S., Liu, C., Lu, H., Ni, S., Cheng, X., Long, Z., Wang, R., Transformations of 2-line ferrihydrite and its effect on cadmium adsorption (2018) Environ. Sci. Pollut. Res. Int., 25, pp. 18059-18070; Jambor, J.L., Dutrizac, J.E., Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide (1998) Chem. Rev., 98, pp. 2549-2585; Jeong, S., Yang, K., Jho, E.H., Nam, K., Importance of chemical binding type between as and iron-oxide on bioaccessibility in soil: test with synthesized two line ferrihydrite (2017) J. Hazard Mater., 330, pp. 157-164; Jurkin, T., Goti{\'c}, M., {\v S}tefani{\'c}, G., Puci{\'c}, I., Gamma-irradiation synthesis of iron oxide nanoparticles in the presence of PEO, PVP or CTAB (2016) Radiat. Phys. Chem., 124, pp. 75-83; Korusenko, P.M., Nesov, S.N., Composite based on multi-walled carbon nanotubes and manganese oxide with rhenium additive for supercapacitors: structural and electrochemical studies (2022) Appl. Sci., 12; Kotov, Y.A., Sokovnin, S.Y., Balezin, M.E., YPT-0.5 repetitive-pulse nanosecond electron accelerator (2000) Instrum. Exp. Tech., 43, pp. 102-105; Kumar, A.A., Som, A., Longo, P., Sudhakar, C., Bhuin, R.G., Gupta, S.S., Sankar, A.M.U., Pradeep, T., Confined metastable 2-line ferrihydrite for affordable point-of-use arsenic-free drinking water (2017) Adv. Mater., 29; Li, Z., Zhang, T., Li, K., One-step synthesis of mesoporous two-line ferrihydrite for effective elimination of arsenic contaminants from natural water (2011) Dalton Trans., 40, pp. 2062-2066; Liu, H., Li, P., Lu, B., Wei, Y., Sun, Y., Transformation of ferrihydrite in the presence or absence of trace Fe(II): the effect of preparation procedures of ferrihydrite (2009) J. Solid State Chem., 182, pp. 1767-1771; Macera, L., Taglieri, G., Daniele, V., Passacantando, M., D'Orazio, F., Nano-sized Fe(III) oxide particles starting from an innovative and eco-friendly synthesis method (2020) Nanomaterials, 10, p. 323; Malakar, A., Kaiser, M., Snow, D.D., Walia, H., Panda, B., Ray, C., Ferrihydrite reduction increases arsenic and uranium bioavailability in unsaturated soil (2020) Environ. Sci. Technol., 54, pp. 13839-13848; Mallet, M., Barth{\'e}l{\'e}my, K., Ruby, C., Renard, A., Naille, S., Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy (2013) J. Colloid Interface Sci., 407, pp. 95-101; Mirkasymov, A.B., Zelepukin, I.V., Ivanov, I.N., Belyaev, I.B., Dzhalilova, D.S., Trushina, D.B., Yaremenko, A.V., Deyev, S.M., Macrophage blockade using nature-inspired ferrihydrite for enhanced nanoparticle delivery to tumor (2022) Int. J. Pharm., 621; Namayandeh, A., Borkiewicz, O.J., Bompoti, N.M., Chrysochoou, M., Michel, F.M., Oxyanion surface complexes control the kinetics and pathway of ferrihydrite transformation to goethite and hematite (2022) Environ. Sci. Technol., 56, pp. 15672-15684; Notini, L.K., ThomasArrigo, L.K., Kaegi, R., Kretzschmar, R., Coexisting goethite promotes Fe(II)-Catalyzed transformation of ferrihydrite to goethite (2022) Environ. Sci. Technol., 56, pp. 12723-12733; Petkevich, A.V., Eryomin, A.N., Agabecov, V.Е., Semashko, V., Mikhayilova, R.V., Formation of nanocomposite, containing iron and cationic polymers (2016) Rep. Nat. Acad. Sci. Belarus, 60, pp. 79-85. , https://doklady.belnauka.by/jour/article/view/314/317, (In Russian); Rani, C., Tiwari, S.D., Estimation of particle magnetic moment distribution for antiferromagnetic ferrihydrite nanoparticles (2015) J. Magn. Magn Mater., 385, pp. 272-276; Rani, C., Tiwari, S.D., Phase transitions in two-line ferrihydrite nanoparticles (2017) Appl. Phys. A, 123 (4), p. 532; Rani, C., Tiwari, S.D., Magnetic properties of two-line ferrihydrite nanoparticles (2022) Phys. Status Solidi, 259; Rani, C., Tiwari, S.D., Magnetic properties of two-line ferrihydrite nanoparticles (2022) Phys. Status Solidi B, 259; Reddy, P.M., Chang, K., Liu, Z., Chen, C.T., Ho, Y.P., Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram–positive and gram–negative bacteria (2014) J. Biomed. Nanotechnol., 10, pp. 1429-1439; Rout, K., Mohapatraa, M., Ananda, S., 2-Line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(ii), Cd(ii), Cu(ii) and Zn(ii) from aqueous solutions (2012) Dalton Trans., 41, pp. 3302-3312; Rzepa, G., Pieczara, G., Gawe{\l}, A., Tomczyk, A., Zalecki, R., The influence of silicate on transformation pathways of synthetic 2-line ferrihydrite (2016) J. Therm. Anal. Calorim., 125, pp. 407-421; Sand, K.K., Jelavi{\'c}, S., Dobbersch{\"u}tz, S., Ashby, P.D., Marshall, M.J., Dideriksen, K., Stipp, S.L.S., De Yoreo, J.J., Mechanistic insight into biopolymer induced iron oxide mineralization through quantification of molecular bonding (2020) Nanoscale Adv., 2, pp. 3323-3333; Schwertmann, U., Cornell, R.M., Iron Oxides in the Laboratory – Preparation and Characterization (1991), second ed. Wiley-VCH Weinheim, Germany; Seah, M.P., Unger, W.E.S., Wang, H., Jordaan, W., Gross, T., Dura, J.A., Moon, D.W., Zhiqiang, M., Ultra-thin SiO2 on Si IX: absolute measurements of the amount of silicon oxide as a thickness of SiO2 on Si (2009) Surf. Interface Anal., 41, p. 430; Shard, A.G., Practical guides for x-ray photoelectron spectroscopy: quantitative XPSJ (2020) Vac. Sci. Technol. A, 38; Sokolov, I.L., Cherkasov, V.R., Vasilyeva, A.V., Bragina, V.A., Nikitin, M.P., Paramagnetic colloidal ferrihydrite nanoparticles for MRI contrasting (2018) Colloids Surf. A Physicochem. Eng. Asp., 539, pp. 46-52; Stolyar, S.V., Yaroslavtsev, R.N., Bayukov, O.A., Balaev, D.A., Krasikov, A.A., Iskhakov, R.S., Vorotynov, A.M., Volochaev, M.N., Preparation, structure and magnetic properties of synthetic ferrihydrite nanoparticles (2018) J. Phys. Conf. Ser., 994; Stolyar, S.V., Kolenchukova, O.A., Boldyreva, A.V., Kudryasheva, N.S., Gerasimova, Y.V., Krasikov, A.A., Yaroslavtsev, R.N., Birukova, E.A., Biogenic ferrihydrite nanoparticles: synthesis, properties in vitro and in vivo testing and the concentration effect (2021) Biomedicines, 9, p. 323; Towe, K.M., Bradley, W.F., Minaralogical constitution of colloidal {"}hydrous ferric oxides (1967) J. Colloid Interface Sci., 24, p. 3; T{\"u}ys{\"u}z, H., Salaba{\c s}, E.L., Weidenthaler, C., Sch{\"u}th, F., Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite (2008) J. Am. Chem. Soc., 130, pp. 280-287; Vallina, B., Rodriguez-Blanco, J.D., Brown, A.P., Benning, L.G., Blanco, J.A., Enhanced magnetic coercivity of a-Fe2O3 obtained from carbonated 2-line ferrihydrite (2014) J. Nanoparticle Res., 16, p. 2322; Wang, H., Tsang, Y.F., Wang, Y., Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: adsorption properties and effects of environmental and chemical conditions (2018) Clean Technol. Environ. Policy, 20, pp. 2169-2179; Wei, H., Liu, J., Chen, Q., Zhu, R., Yan, L., Yang, Y., Liang, X., He, H., Heterogeneous and retarded phase transformation of ferrihydrite on montmorillonite surface: the important role of surface interactions (2023) Am. Mineral., 108, pp. 865-880; Xu, W., Hausner, D.B., Harrington, R., Lee, P.L., Strongin, D.R., Parise, J.B., Structural water in ferrihydrite and constraints this provides on possible structure models (2011) Am. Mineral., 96, pp. 513-520; Yaghtina, M., Yaghtina, A., Tanga, Z., Troczynski, T., Improving the rheological and stability characteristics of highly concentrated aqueous yttria stabilized zirconia slurries (2020) Ceram. Int., 46, pp. 26991-26999; Yamashita, T., Hayes, P., Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials (2008) Appl. Surf. Sci., 254, pp. 2441-2449; Yang, Y., Tian, Q., Wu, S., Li, Y., Yang, K., Yan, Y., Shang, L., Zhang, L., Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy (2021) Biomaterials, 271; Yaremenko, A.V., Zelepukin, I.V., Ivanov, I.N., Melikov, R.O., Pechnikova, N.A., Dzhalilova, D.S., Mirkasymov, A.B., Nikitin, P.I., Influence of magnetic nanoparticle biotransformation on contrasting efficiency and iron metabolism (2022) J. Nanobiotechnol., 20, p. 535; Yoshinaga, N., Kanasaki, N., Synthesis of ferrihydrite and feroxyhyte (1993) Clay Sci., 9, pp. 43-51; Zhang, R., Chen, L., Liang, Q., Xi, J., Zhao, H., Jin, Y., Gao, X., Fan, K., Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy (2021) Nano Today, 41; Zhao, B., Wang, Y., Guo, H., Wang, J., He, Y., Jiao, Z., Wu, M., Iron oxide (III) nanoparticles fabricated by electron beam irradiation method (2007) Mater. Sci.-Poland, 25, pp. 1143-1148",
year = "2024",
month = may,
day = "1",
doi = "10.1016/j.radphyschem.2024.111612",
language = "Английский",
volume = "218",
journal = "Radiation Physics and Chemistry",
issn = "0969-806X",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Radiation-chemical synthesis and characterization of ferrihydrite from iron (III) nitrate

AU - Ilves, V.G.

AU - Balezin, M.E.

AU - Sokovnin, S. Yu.

AU - Gerasimov, A.S.

AU - Kalinina, E.G.

AU - Rusakova, D.S.

AU - Korusenko, P.M.

AU - Zuev, M.G.

AU - Uimin, M.A.

N1 - Export Date: 11 March 2024 CODEN: RPCHD Адрес для корреспонденции: Ilves, V.G.; Institute of Electrophysics, Russian Federation; эл. почта: zefaivg@mail.ru Химические вещества/CAS: acetylacetone, 123-54-6; alcohol, 64-17-5; ferric hydroxide, 11113-66-9, 12022-37-6, 12181-28-1, 1309-33-7, 1310-14-1, 1317-60-8, 1317-63-1; nitrogen, 7727-37-9; polyethyleneimine, 74913-72-7; water, 7732-18-5 Сведения о финансировании: Grantová Agentura České Republiky, GA ČR, 20-58-26002 Сведения о финансировании: Russian Foundation for Basic Research, РФФИ Текст о финансировании 1: The reported study was funded by RFBR and GACR , project number № 20-58-26002 . Пристатейные ссылки: Abedini, A., Daud, A.R., Abdul Hamid, M.A., Kamil Othman, N., Radiolytic formation of Fe3O4 nanoparticles: influence of radiation dose on structure and magnetic properties (2014) PLoS One, 9; Ahmad, K., Ashah, I., Ali, S., Khan, M.T., Qureshi, M.B.A., Shah, S.H.A., Ali, A., Gu, H.N., Synthesis and evaluation of Ca-doped ferrihydrite as a novel adsorbent for the efficient removal of fluoride (2022) Environ. Sci. Pollut. Res. Int., 29, pp. 6375-6388; Arinchtein, A., Schmack, R., Kraffert, K., Radnik, J., Dietrich, P., Sachse, R., Ralph Kraehnert, role of water in phase transformations and crystallization of ferrihydrite and hematite (2020) ACS Appl. Mater. Interfaces, 12, pp. 38714-38722; Balezin, M.E., Sokovnin, S.Y., Production of iron oxide nanopowders by radiation-chemical method (2022) Proceedings of 8th International Congress on Energy Fluxes and Radiation Effects EFRE, pp. 453-457. , Tomsk, Russia; Balezin, M.E., Sokovnin, S.Y., Uimin, M.A., Preparation of iron oxide nanopowders by the radiation-chemical method (2021) J. Phys.: Conf. Ser., 2064; Barro'n, V., Torrent, J., Evidence for a simple pathway to maghemite in Earth and Mars soils (2002) Geochem. Cosmochim. Acta, 66, pp. 2801-2806; Barro'n, V., Torrent, J., de Grave, E., Hydromaghemite, an intermediate in the hydrothermal transformation of 2-line ferrihydrite into hematite (2003) Am. Mineral., 88, pp. 1679-1688; Boily, J.F., Song, X., Direct identification of reaction sites on ferrihydrite (2020) Commun. Chem., 3; Burrows, N.D., Kesselman, E., Sabyrov, K., Stemig, A., Talmonb, Y., Penn, R.L., Crystalline nanoparticle aggregation in non-aqueous solvents (2014) CrystEngComm, 16, pp. 1472-1481; Campbell, A.S., Schwertmann, U., Campbell, P.A., Formation of cubic phases on heating ferrihydrite (1997) Clay Miner., 32, pp. 615-622; Cazacu, N., Chilom, C.G., Iftimie,Mю Bălășoiu, S., Ladygina, V.P., Stolyar, S.V., Orelovich, O.L., Kovalev, Y.S., Rogachev, A.V., Biogenic ferrihydrite nanoparticles produced by Klebsiella oxytoca: characterization, physicochemical properties and bovine serum albumin interactions (2022) Nanomaterials, 12, p. 249; Chappell, H.F., Thom, W., Bowron, D.T., Faria, N., Hasnip, P.J., Powell, J.J., Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling (2017) Phys. Rev. Mater., 1; Chilom, C.G., Gazdaru, D.M., Balasoiu, M., Bacalum, M., Stolyar, S.V., Popescu, A.I., Biomedical application of biogenic ferrihydrite nanoparticles (2017) Rom. J. Phys., 62, p. 701; Chukhov, F.V., Zvyagin, B.B., Gorshkov, A.I., Yermilova, L.P., Balashova, V.V., Ferrihydrite (1974) Int. Geol. Rev., 16, pp. 1131-1143; Chukhrov, F.V., Zvyagin, B.B., Gorshkov, A.I., Yermilova, L.P., Rudnitskaya, E.S., The Towe-Bradley phase—a product of the supergene alteration of ores (1971) Izvestia Akad Nauk SSSR (Geol Ser.), 1, p. 3. , (in Russian); Cornell, R.M., Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (2003), second ed. Wiley-VCH Weinheim, Germany; Cudennec, Y., Lecerf, A., The transformation of ferrihydrite into goethite or hematite, revisited (2006) J. Solid State Chem., 179, pp. 716-722; Das, S., Hendry, M.J., Essilfie-Dughan, J., Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature (2011) Environ. Sci. Technol., 45, pp. 268-275; Descostes, M., Mercier, F., Thromat, N., Beaucaire, C., Gautier-Soyer, M., Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium (2000) Appl. Surf. Sci., 165, pp. 288-302; Duszyńska, A., Danielewicz, A., Kadłubowski, S., Kozanecki, M., Maniukiewicz, W., Sowiński, P., Szadkowska – Nicze, M., Influence of electron-beam irradiation on surface properties of magnetic iron oxide nanoparticles stabilized with citrate (2020) Radiat. Phys. Chem., 169; Engel, M., Noël, V., Pierce, S., Kovarik, L., Kukkadapu, R.K., Pacheco, J.S.L., Qafoku, O., Bargar, J.R., Structure and composition of natural ferrihydrite nano-colloids in anoxic groundwater (2023) Water Res., 238; Filip, J., Zboril, R., Schneeweiss, O., Zeman, J., Cernik, M., Kvapil, P., Otyepka, M., Environmental applications of chemically pure natural ferrihydrite (2007) Environ. Sci. Technol., 41, pp. 4367-4374; Gong, Y., Su, Y., Zhang, Y., Zhou, X., Biological reduction of ferrihydrite with silica addition: rates and controlling mechanisms (2021) ACS Earth Space Chem., 10, pp. 2778-2791; Gordon, L.M., Román, J.K., Michael Everly, R., Cohen, M.J., Wilker, J.J., Derk joester, selective formation of metastable ferrihydrite in the Chiton tooth (2014) Angew. Chem., Int. Ed. Engl., 53, pp. 11506-11509; Gracheva, M., Klencsár, Z., Kis, V.K., Béres, K.A., May, Z., Halasy, V., Singh, A., Kovács, K., Iron nanoparticles for plant nutrition: synthesis, transformation, and utilization by the roots of Cucumis sativus (2023) J. Mater. Res., 38, pp. 1035-1047; Gregg, S.J., Sing, K.S.W., Adsorption, Surface Area and Porosity (1982), p. 303. , Academic Press London; Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., McIntyre, N.S., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds (2004) Surf. Interface Anal., 36, pp. 1564-1574; Guyodo, Y., Banerjee, S.K., Lee Penn, R., Burleson, D., Berquo, T.S., Seda, T., Solheid, P., Magnetic properties of synthetic six-line ferrihydrite nanoparticles (2006) Phys. Earth Planet. In., 154, pp. 222-233; Hashimoto, H., Ukita, M., Sakuma, R., Nakanishi, M., Fujii, T., Imanishi, N., Takada, J., Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries (2016) J. Power Sources, 328, pp. 503-509; Hiemstra, T., Mendez, J.C., Li, J., Evolution of the reactive surface area of ferrihydrite: time, pH, and temperature dependency of growth by Ostwald ripening (2019) Environ. Sci.: Nano, 6, pp. 820-833; Huang, Y., Yang, J., Degradation of sulfamethoxazole by the heterogeneous Fenton-like reaction between gallic acid and ferrihydrite. Ecotoxicol. Environ. Saf. DOI: 10.1016/j.ecoenv.2021.112847; Huang, Y., Zhang, S., Liu, C., Lu, H., Ni, S., Cheng, X., Long, Z., Wang, R., Transformations of 2-line ferrihydrite and its effect on cadmium adsorption (2018) Environ. Sci. Pollut. Res. Int., 25, pp. 18059-18070; Jambor, J.L., Dutrizac, J.E., Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide (1998) Chem. Rev., 98, pp. 2549-2585; Jeong, S., Yang, K., Jho, E.H., Nam, K., Importance of chemical binding type between as and iron-oxide on bioaccessibility in soil: test with synthesized two line ferrihydrite (2017) J. Hazard Mater., 330, pp. 157-164; Jurkin, T., Gotić, M., Štefanić, G., Pucić, I., Gamma-irradiation synthesis of iron oxide nanoparticles in the presence of PEO, PVP or CTAB (2016) Radiat. Phys. Chem., 124, pp. 75-83; Korusenko, P.M., Nesov, S.N., Composite based on multi-walled carbon nanotubes and manganese oxide with rhenium additive for supercapacitors: structural and electrochemical studies (2022) Appl. Sci., 12; Kotov, Y.A., Sokovnin, S.Y., Balezin, M.E., YPT-0.5 repetitive-pulse nanosecond electron accelerator (2000) Instrum. Exp. Tech., 43, pp. 102-105; Kumar, A.A., Som, A., Longo, P., Sudhakar, C., Bhuin, R.G., Gupta, S.S., Sankar, A.M.U., Pradeep, T., Confined metastable 2-line ferrihydrite for affordable point-of-use arsenic-free drinking water (2017) Adv. Mater., 29; Li, Z., Zhang, T., Li, K., One-step synthesis of mesoporous two-line ferrihydrite for effective elimination of arsenic contaminants from natural water (2011) Dalton Trans., 40, pp. 2062-2066; Liu, H., Li, P., Lu, B., Wei, Y., Sun, Y., Transformation of ferrihydrite in the presence or absence of trace Fe(II): the effect of preparation procedures of ferrihydrite (2009) J. Solid State Chem., 182, pp. 1767-1771; Macera, L., Taglieri, G., Daniele, V., Passacantando, M., D'Orazio, F., Nano-sized Fe(III) oxide particles starting from an innovative and eco-friendly synthesis method (2020) Nanomaterials, 10, p. 323; Malakar, A., Kaiser, M., Snow, D.D., Walia, H., Panda, B., Ray, C., Ferrihydrite reduction increases arsenic and uranium bioavailability in unsaturated soil (2020) Environ. Sci. Technol., 54, pp. 13839-13848; Mallet, M., Barthélémy, K., Ruby, C., Renard, A., Naille, S., Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy (2013) J. Colloid Interface Sci., 407, pp. 95-101; Mirkasymov, A.B., Zelepukin, I.V., Ivanov, I.N., Belyaev, I.B., Dzhalilova, D.S., Trushina, D.B., Yaremenko, A.V., Deyev, S.M., Macrophage blockade using nature-inspired ferrihydrite for enhanced nanoparticle delivery to tumor (2022) Int. J. Pharm., 621; Namayandeh, A., Borkiewicz, O.J., Bompoti, N.M., Chrysochoou, M., Michel, F.M., Oxyanion surface complexes control the kinetics and pathway of ferrihydrite transformation to goethite and hematite (2022) Environ. Sci. Technol., 56, pp. 15672-15684; Notini, L.K., ThomasArrigo, L.K., Kaegi, R., Kretzschmar, R., Coexisting goethite promotes Fe(II)-Catalyzed transformation of ferrihydrite to goethite (2022) Environ. Sci. Technol., 56, pp. 12723-12733; Petkevich, A.V., Eryomin, A.N., Agabecov, V.Е., Semashko, V., Mikhayilova, R.V., Formation of nanocomposite, containing iron and cationic polymers (2016) Rep. Nat. Acad. Sci. Belarus, 60, pp. 79-85. , https://doklady.belnauka.by/jour/article/view/314/317, (In Russian); Rani, C., Tiwari, S.D., Estimation of particle magnetic moment distribution for antiferromagnetic ferrihydrite nanoparticles (2015) J. Magn. Magn Mater., 385, pp. 272-276; Rani, C., Tiwari, S.D., Phase transitions in two-line ferrihydrite nanoparticles (2017) Appl. Phys. A, 123 (4), p. 532; Rani, C., Tiwari, S.D., Magnetic properties of two-line ferrihydrite nanoparticles (2022) Phys. Status Solidi, 259; Rani, C., Tiwari, S.D., Magnetic properties of two-line ferrihydrite nanoparticles (2022) Phys. Status Solidi B, 259; Reddy, P.M., Chang, K., Liu, Z., Chen, C.T., Ho, Y.P., Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram–positive and gram–negative bacteria (2014) J. Biomed. Nanotechnol., 10, pp. 1429-1439; Rout, K., Mohapatraa, M., Ananda, S., 2-Line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(ii), Cd(ii), Cu(ii) and Zn(ii) from aqueous solutions (2012) Dalton Trans., 41, pp. 3302-3312; Rzepa, G., Pieczara, G., Gaweł, A., Tomczyk, A., Zalecki, R., The influence of silicate on transformation pathways of synthetic 2-line ferrihydrite (2016) J. Therm. Anal. Calorim., 125, pp. 407-421; Sand, K.K., Jelavić, S., Dobberschütz, S., Ashby, P.D., Marshall, M.J., Dideriksen, K., Stipp, S.L.S., De Yoreo, J.J., Mechanistic insight into biopolymer induced iron oxide mineralization through quantification of molecular bonding (2020) Nanoscale Adv., 2, pp. 3323-3333; Schwertmann, U., Cornell, R.M., Iron Oxides in the Laboratory – Preparation and Characterization (1991), second ed. Wiley-VCH Weinheim, Germany; Seah, M.P., Unger, W.E.S., Wang, H., Jordaan, W., Gross, T., Dura, J.A., Moon, D.W., Zhiqiang, M., Ultra-thin SiO2 on Si IX: absolute measurements of the amount of silicon oxide as a thickness of SiO2 on Si (2009) Surf. Interface Anal., 41, p. 430; Shard, A.G., Practical guides for x-ray photoelectron spectroscopy: quantitative XPSJ (2020) Vac. Sci. Technol. A, 38; Sokolov, I.L., Cherkasov, V.R., Vasilyeva, A.V., Bragina, V.A., Nikitin, M.P., Paramagnetic colloidal ferrihydrite nanoparticles for MRI contrasting (2018) Colloids Surf. A Physicochem. Eng. Asp., 539, pp. 46-52; Stolyar, S.V., Yaroslavtsev, R.N., Bayukov, O.A., Balaev, D.A., Krasikov, A.A., Iskhakov, R.S., Vorotynov, A.M., Volochaev, M.N., Preparation, structure and magnetic properties of synthetic ferrihydrite nanoparticles (2018) J. Phys. Conf. Ser., 994; Stolyar, S.V., Kolenchukova, O.A., Boldyreva, A.V., Kudryasheva, N.S., Gerasimova, Y.V., Krasikov, A.A., Yaroslavtsev, R.N., Birukova, E.A., Biogenic ferrihydrite nanoparticles: synthesis, properties in vitro and in vivo testing and the concentration effect (2021) Biomedicines, 9, p. 323; Towe, K.M., Bradley, W.F., Minaralogical constitution of colloidal "hydrous ferric oxides (1967) J. Colloid Interface Sci., 24, p. 3; Tüysüz, H., Salabaş, E.L., Weidenthaler, C., Schüth, F., Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite (2008) J. Am. Chem. Soc., 130, pp. 280-287; Vallina, B., Rodriguez-Blanco, J.D., Brown, A.P., Benning, L.G., Blanco, J.A., Enhanced magnetic coercivity of a-Fe2O3 obtained from carbonated 2-line ferrihydrite (2014) J. Nanoparticle Res., 16, p. 2322; Wang, H., Tsang, Y.F., Wang, Y., Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: adsorption properties and effects of environmental and chemical conditions (2018) Clean Technol. Environ. Policy, 20, pp. 2169-2179; Wei, H., Liu, J., Chen, Q., Zhu, R., Yan, L., Yang, Y., Liang, X., He, H., Heterogeneous and retarded phase transformation of ferrihydrite on montmorillonite surface: the important role of surface interactions (2023) Am. Mineral., 108, pp. 865-880; Xu, W., Hausner, D.B., Harrington, R., Lee, P.L., Strongin, D.R., Parise, J.B., Structural water in ferrihydrite and constraints this provides on possible structure models (2011) Am. Mineral., 96, pp. 513-520; Yaghtina, M., Yaghtina, A., Tanga, Z., Troczynski, T., Improving the rheological and stability characteristics of highly concentrated aqueous yttria stabilized zirconia slurries (2020) Ceram. Int., 46, pp. 26991-26999; Yamashita, T., Hayes, P., Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials (2008) Appl. Surf. Sci., 254, pp. 2441-2449; Yang, Y., Tian, Q., Wu, S., Li, Y., Yang, K., Yan, Y., Shang, L., Zhang, L., Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy (2021) Biomaterials, 271; Yaremenko, A.V., Zelepukin, I.V., Ivanov, I.N., Melikov, R.O., Pechnikova, N.A., Dzhalilova, D.S., Mirkasymov, A.B., Nikitin, P.I., Influence of magnetic nanoparticle biotransformation on contrasting efficiency and iron metabolism (2022) J. Nanobiotechnol., 20, p. 535; Yoshinaga, N., Kanasaki, N., Synthesis of ferrihydrite and feroxyhyte (1993) Clay Sci., 9, pp. 43-51; Zhang, R., Chen, L., Liang, Q., Xi, J., Zhao, H., Jin, Y., Gao, X., Fan, K., Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy (2021) Nano Today, 41; Zhao, B., Wang, Y., Guo, H., Wang, J., He, Y., Jiao, Z., Wu, M., Iron oxide (III) nanoparticles fabricated by electron beam irradiation method (2007) Mater. Sci.-Poland, 25, pp. 1143-1148

PY - 2024/5/1

Y1 - 2024/5/1

N2 - In this study, 2-line ferrihydrite (2L Fh) nanoparticles (NPles)were synthesized by radiation-chemical method from an alcoholic solution of iron (III) nitrate for the first time. The X-ray diffraction analysis confirmed that the synthetic powder exhibited the characteristic pattern of 2L Fh NPles. DSC-TG analysis conducted in air atmosphere further verified the formation of 2L Fh. SEM analysis showed the presence of mesoporous plate-like structures in the 2L Fh powder, consisting of aggregates of NPs with an average size of approximately 20 nm. The absence of impurity peaks on the X-ray diffractograms and energy dispersion spectra (EDX) confirmed the chemical purity of the produced 2L Fh NPles. Additionally, the XPS method detected the presence of nitrogen and carbon adsorbed to the developed surface of the 2L Fh plates. 2L Fh NPles, when dried in air at a temperature of 50 °C, rapidly dissolved in water. 2L Fh NPles alcohol suspensions were stabilized using surfactants polyethylenimine (PEI) and acetylacetone (AcAs). 2L Fh NPles showed good photocatalytic properties when irradiated with ultraviolet light of methyl violet (MV) dye. These 2L Fh NPles, synthesized using an environmentally friendly radiation-chemical method, have immense potential for applications in biomedicine and photocatalysis. © 2024 Elsevier Ltd

AB - In this study, 2-line ferrihydrite (2L Fh) nanoparticles (NPles)were synthesized by radiation-chemical method from an alcoholic solution of iron (III) nitrate for the first time. The X-ray diffraction analysis confirmed that the synthetic powder exhibited the characteristic pattern of 2L Fh NPles. DSC-TG analysis conducted in air atmosphere further verified the formation of 2L Fh. SEM analysis showed the presence of mesoporous plate-like structures in the 2L Fh powder, consisting of aggregates of NPs with an average size of approximately 20 nm. The absence of impurity peaks on the X-ray diffractograms and energy dispersion spectra (EDX) confirmed the chemical purity of the produced 2L Fh NPles. Additionally, the XPS method detected the presence of nitrogen and carbon adsorbed to the developed surface of the 2L Fh plates. 2L Fh NPles, when dried in air at a temperature of 50 °C, rapidly dissolved in water. 2L Fh NPles alcohol suspensions were stabilized using surfactants polyethylenimine (PEI) and acetylacetone (AcAs). 2L Fh NPles showed good photocatalytic properties when irradiated with ultraviolet light of methyl violet (MV) dye. These 2L Fh NPles, synthesized using an environmentally friendly radiation-chemical method, have immense potential for applications in biomedicine and photocatalysis. © 2024 Elsevier Ltd

KW - 2L Fh nanoparticles

KW - Radiation-chemical synthesis

KW - Acetone

KW - Iron compounds

KW - Nanoparticles

KW - Nitrates

KW - Photocatalytic activity

KW - Plates (structural components)

KW - X ray powder diffraction

KW - 2-line ferrihydrite nanoparticle

KW - Air atmosphere

KW - Alcoholic solutions

KW - Chemical method

KW - DSC-TG analysis

KW - Ferrihydrites

KW - SEM analysis

KW - Synthesis and characterizations

KW - Synthesised

KW - Synthesis (chemical)

KW - acetylacetone

KW - alcohol

KW - dye

KW - ferric hydroxide

KW - ferrihydrite nanoparticle

KW - iron derivative

KW - iron nitrate

KW - methyl violet

KW - nanoparticle

KW - nitric acid derivative

KW - nitrogen

KW - polyethyleneimine

KW - unclassified drug

KW - water

KW - Article

KW - atmosphere

KW - biomedicine

KW - chemical analysis

KW - chemical phenomena

KW - chemical purity

KW - chemical structure

KW - controlled study

KW - differential scanning calorimetry

KW - electron beam

KW - energy dispersive X ray spectroscopy

KW - particle size

KW - photocatalysis

KW - powder

KW - radiation chemical synthesis

KW - scanning electron microscopy

KW - synthesis

KW - temperature

KW - thermogravimetry

KW - ultraviolet radiation

KW - X ray diffraction

UR - https://www.mendeley.com/catalogue/7395bc22-c752-33a5-b135-a735f929f10a/

U2 - 10.1016/j.radphyschem.2024.111612

DO - 10.1016/j.radphyschem.2024.111612

M3 - статья

VL - 218

JO - Radiation Physics and Chemistry

JF - Radiation Physics and Chemistry

SN - 0969-806X

M1 - 111612

ER -

ID: 117393002