Quantum measurement-induced dynamics of many-body ultracold bosonic and fermionic systems in optical lattices

Gabriel Mazzucchi, Wojciech Kozlowski, Santiago F. Caballero-Benitez, Thomas J. Elliott, Igor B. Mekhov

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

33 Цитирования (Scopus)

Аннотация

Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Coupling these systems to quantized light leads to a plethora of new phenomena and has opened up a new field of study. Here we introduce an unusual additional source of competition in a many-body strongly correlated system: We prove that quantum backaction of global measurement is able to efficiently compete with intrinsic short-range dynamics of an atomic system. The competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period without the need of single site addressing. In coherence with a general physical concept, where new competitions typically lead to new phenomena, we demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, long-range entanglement, and correlated tunneling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect. We demonstrate both the breakup and protection of strongly interacting fermion pairs by measurement. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems.

Язык оригиналаанглийский
Номер статьи023632
ЖурналPhysical Review A
Том93
Номер выпуска2
DOI
СостояниеОпубликовано - 19 фев 2016

Предметные области Scopus

  • Атомная и молекулярная физика и оптика

Fingerprint Подробные сведения о темах исследования «Quantum measurement-induced dynamics of many-body ultracold bosonic and fermionic systems in optical lattices». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать