Periods of $L^2$-forms in an infinite-connected planar domain: Périodes de formes $L^2$ dans un domaine plan infiniment connexe

    Результат исследований: Научные публикации в периодических изданияхстатья

    1 цитирование (Scopus)

    Выдержка

    Let Ω⊂R2 be a countably-connected domain. In Ω, consider closed differential forms of degree 1 with components in L2(Ω). Further, consider sequences of periods of such forms around holes in Ω, i.e. around bounded connected components of R2∖Ω. For which domains Ω the collection of such a period sequences coincides with ℓ2? We give an answer in terms of metric properties of holes in Ω.

    Язык оригиналаанглийский
    Страницы (с-по)1060-1064
    Число страниц5
    ЖурналComptes Rendus Mathematique
    Том354
    Номер выпуска11
    DOI
    СостояниеОпубликовано - ноя 2016

    Отпечаток

    Differential Forms
    Connected Components
    Metric
    Closed
    Form

    Предметные области Scopus

    • Математика (все)
    • Анализ
    • Геометрия и топология

    Ключевые слова

    • planar countably connected domains
    • period operators for differential forms
    • complete interpolation property
    • Bergman spaces

    Цитировать

    @article{dafef4c83b674b8b9b58c4e704296540,
    title = "Periods of $L^2$-forms in an infinite-connected planar domain: P{\'e}riodes de formes $L^2$ dans un domaine plan infiniment connexe",
    abstract = "Let Ω⊂R2 be a countably-connected domain. In Ω, consider closed differential forms of degree 1 with components in L2(Ω). Further, consider sequences of periods of such forms around holes in Ω, i.e. around bounded connected components of R2∖Ω. For which domains Ω the collection of such a period sequences coincides with ℓ2? We give an answer in terms of metric properties of holes in Ω.",
    keywords = "planar countably connected domains, period operators for differential forms, complete interpolation property, Bergman spaces",
    author = "Mikhail Dubashinskiy",
    year = "2016",
    month = "11",
    doi = "10.1016/j.crma.2016.09.007",
    language = "English",
    volume = "354",
    pages = "1060--1064",
    journal = "Comptes Rendus Mathematique",
    issn = "1631-073X",
    publisher = "Elsevier",
    number = "11",

    }

    Periods of $L^2$-forms in an infinite-connected planar domain : Périodes de formes $L^2$ dans un domaine plan infiniment connexe. / Dubashinskiy, Mikhail.

    В: Comptes Rendus Mathematique, Том 354, № 11, 11.2016, стр. 1060-1064.

    Результат исследований: Научные публикации в периодических изданияхстатья

    TY - JOUR

    T1 - Periods of $L^2$-forms in an infinite-connected planar domain

    T2 - Périodes de formes $L^2$ dans un domaine plan infiniment connexe

    AU - Dubashinskiy, Mikhail

    PY - 2016/11

    Y1 - 2016/11

    N2 - Let Ω⊂R2 be a countably-connected domain. In Ω, consider closed differential forms of degree 1 with components in L2(Ω). Further, consider sequences of periods of such forms around holes in Ω, i.e. around bounded connected components of R2∖Ω. For which domains Ω the collection of such a period sequences coincides with ℓ2? We give an answer in terms of metric properties of holes in Ω.

    AB - Let Ω⊂R2 be a countably-connected domain. In Ω, consider closed differential forms of degree 1 with components in L2(Ω). Further, consider sequences of periods of such forms around holes in Ω, i.e. around bounded connected components of R2∖Ω. For which domains Ω the collection of such a period sequences coincides with ℓ2? We give an answer in terms of metric properties of holes in Ω.

    KW - planar countably connected domains

    KW - period operators for differential forms

    KW - complete interpolation property

    KW - Bergman spaces

    UR - http://www.scopus.com/inward/record.url?scp=84994115629&partnerID=8YFLogxK

    U2 - 10.1016/j.crma.2016.09.007

    DO - 10.1016/j.crma.2016.09.007

    M3 - Article

    AN - SCOPUS:84994115629

    VL - 354

    SP - 1060

    EP - 1064

    JO - Comptes Rendus Mathematique

    JF - Comptes Rendus Mathematique

    SN - 1631-073X

    IS - 11

    ER -