Partial Differential Equations — Spectral gaps and non-Bragg resonances in a water channel

Piat V. Chiado, S.A. Nazarov, K. Ruotsalainen

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

In this paper the essential spectrum of the linear problem of water-waves on a 3d-channel with gently periodic bottom will be studied. We show that under a certain geometric condition on the bottom profile the essential spectrum has spectral gaps. In classical analysis of waveguides it is known that the Bragg resonances at the edges of the Brillouin zones create band gaps in the spectrum. Here we demonstrate that the band gaps can be opened also in the frequency range far from the Bragg resonances. The position and the length of the gaps are found out by applying an asymptotic analysis to the model problem in the periodicity cell.

Язык оригиналаанглийский
Страницы (с-по)321-342
Число страниц22
ЖурналAtti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni
Том29
Номер выпуска2
DOI
СостояниеОпубликовано - 1 янв 2018

Предметные области Scopus

  • Математика (все)

Fingerprint Подробные сведения о темах исследования «Partial Differential Equations — Spectral gaps and non-Bragg resonances in a water channel». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать