Ostrogradsky-Gauss theorem for problems of gas and fluid mechanics

Evelina Prozorova

Результат исследований: Научные публикации в периодических изданияхстатья в журнале по материалам конференции

Аннотация

Usually the derivation of conservation laws is analyzed using the Ostrogradsky-Gauss theorem for a fixed volume without moving. The theorem is a consequence of the application of the integration in parts at the spatial case. In reality, in mechanics and physics gas and liquid move and not only progressively, but also rotate. Discarding the term means ignoring the velocity circulation over the surface of the selected volume. When taking into account the motion of a gas, the extra-integral term is difficult to introduce into the differential equation. Therefore, to account for all components of the motion, it is proposed to use an integral formulation. Next question is the role of the discreteness of the description of the medium in the kinetic theory and the interaction of the discreteness and "continuity" of the media is investigated. The question of the relationship between the discreteness of a medium and its description with the help of continuum mechanics arises due to the fact that the distances between molecules in a rarefied gas are finite, the times between collisions are finite, but on definition under calculating derivatives on time and space we deal with infinitely small.

Язык оригиналаанглийский
Номер статьи012009
ЖурналJournal of Physics: Conference Series
Том1334
Номер выпуска1
DOI
СостояниеОпубликовано - 18 окт 2019
Событие3rd International Conference on Mathematical Methods and Computational Techniques in Science and Engineering, MMCTSE 2019 - London, Великобритания
Продолжительность: 23 фев 201925 фев 2019

Предметные области Scopus

  • Физика и астрономия (все)

Fingerprint Подробные сведения о темах исследования «Ostrogradsky-Gauss theorem for problems of gas and fluid mechanics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать